Funct. Mater. 2025; 32 (4): 601-611.

doi:https://doi.org/10.15407/fm32.04.601

Synthesis and properties of high temperature rheology modifier for high density synthetic-based drilling fluids

Qiang Sun 1,2, Zheng-song Qiu1, Tie Geng2, Han-yi Zhong1, Wei-li Liu2, Yu-lin Tang2, Jin-cheng Dong2

1 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, People′s Republic of China
2 China Oilfield Services Limited, Tianjin, 300459, People‘s Republic of China

Abstract: 

A low-molecular-weight fatty acid amide-based rheology modifier, HRM, suitable for use at high temperatures was synthesized by reacting a dimeric fatty acid with 2-amino-1,3-propanediol in a 1:1.5 molar ratio. It was designed to address the insufficient sag resistance of high-density synthetic drilling fluids at high temperatures. Structural characterization, mechanism analysis, and performance evaluation were also conducted. The results of thermogravimetric analysis and emulsion stability showed that HRM has excellent thermal stability below its decomposition threshold of 307 °C, and it can adsorb at the oil-water interface, effectively reducing interfacial tension and enhancing the demulsification voltage and the emulsification rate. HRM effectively improved the structural strength of the synthetic-based drilling fluid system by bridging the emulsion droplets to form a gel-like network structure, thereby effectively improving solid-phase suspension ability and settlement stability.

Keywords: 
Synthetic-based drilling fluid; Rheology modifier; Organic clay, High-temperature, Suspension capability
References: 

1. Xu, L.; Huang, X.; You, F.; Xu, J.; Xu, M.; Gao, J.; Huang, M. Experimental investigation into a novel supersaturated saline drilling fluid available in anhydrite formation: a case study of missan oilfields, iraq. Arab. J. Sci. Eng. 2021, 46, 6797-6807. https://doi.org/10.1007/s13369-020-04911-x.

2. Ikram, R.; Jan, B. M.; Vejpravova, J. Towards recent tendencies in drilling fluids: application of carbon-based nanomaterials. J. Mater. Res. Technol. 2021, 15, 3733-3758. https://doi.org/ 10.1016/j.jmrt.2021.09.114.

3. Jain, R.; Mahto, V.; Sharma, V.P. Evaluation of polyacrylamide grafted polyethylene glycol/silica nanocomposite as potential additive in water-based drilling mud for reactive shale formation. J. Nat. Gas Sci. Eng. 2015, 26, 526-537. https://doi.org/10.1016/j.jngse.2015.06.051.

4. Gudarzifar, H.; Sabbaghi, S.; Rezvani, A.; Saboori, R. Experimental investigation of rheological & filtration properties and thermal conductivity of water-based drilling fluid enhanced. Powder Technol. 2020, 368, 323-341. http://doi.org/10.1016/j.powtec.2020.04.049.

5. Ma, X.; Zhu, Z.; Hou, D.; Shi, W. Synthesis and performance evaluation of a water-soluble copolymer as high-performance fluid loss additive for water-based drilling fluid at high temperature. Russ. J. Appl. Chem. 2016, 89, 1694-1705. https://doi.org/10.1134/S1070427216100190.

6. Srungavarapu, M.; Patidar, K.K.; Pathak, A.K.; Mandal, A. Performance studies of water-based drilling fluid for drilling through hydrate bearing sediments. Appl. Clay Sci. 2018, 152, 211-220. http://doi.org/10.1016/j.clay.2017.11.014.

7. Amani, M.; Al-Jubouri, M.; Shadravan, A. Comparative study of using oil-based mud versus water-based mud in HPHT fields. Adv. Pet. Explor. Dev. 2012, 4, 18-27. https://doi.org/10.3968/J.APED.1925543820120402.987.

8. Hermoso, j.; Martinez-Boza, F.; Gallegos, C. Influence of viscosity modifier nature and concentration on the viscous flow behaviour of oil-based drilling fluids at high pressure. Appl. Clay Sci. 2014, 87, 14-21. https://doi.org/10.1016/j.clay.2013.10.011.

9. Hermoso, J.; Martinez-Boza, F.; Gallegos, C. Influence of aqueous phase volume fraction, organoclay concentration and pressure on invert-emulsion oil muds rheology. J. Ind. Eng. Chem. 2015, 22, 341-349. https://doi.org/10.1016/j.jiec.2014.07.028.

10. Hermoso, J.; Martinez-Boza, F.J.; Gallegos, C. Organoclay influence on high pressure-high temperature volumetric properties of oil-based drilling fluids. J. Pet. Sci.Eng. 2017, 151, 13-23. https://doi.org/10.1016/j.petrol.2017.01.040.

11. Msadok, I.; Hamdi, N.; Rodríguez, M.A.; Ferrari, B.; Srasra, E. Synthesis and characterization of tunisian organoclay: application as viscosifier in oil drilling fluid. Chem. Eng. Res. Des. 2020, 153, 427-434. https://doi.org/10.1016/j.cherd.2019.11.010.

12. Geng, T.; Qiu, Z.; Zhao, C.; Zhang, L.; Zhao, X. Rheological study on the invert emulsion fluids with organoclay at high aged temperatures. Colloids Surf. A 2019, 573, 211-221. https://doi.org/10.1016/j.colsurfa.2019.04.056.

13. Sun, J.; Yang, J.; Bai, Y.; Lyu, K.; Liu, F. Research progress and development of deep and ultra-deep drilling fluid technology. Petrol. Explor. Dev. 2024, 51, 1022-1034. https://doi.org/10.1016/S1876-3804(24)60522-7.

14. Luna, F. M. T.; Rocha, B.S.; Rola, E.M.; Albuquerque, M.C.G.; Azevedo, D. C.S.; Célio, L. Assessment of biodegradability and oxidation stability of mineral, vegetable and synthetic oil samples. Ind. Crop. Prod. 2010, 33, 579-583. https://doi.org/10.1016/j.indcrop.2010.12.012.

15. Fadairo, A.; Adeyemi, G.; Ogunkunle, T.; Ling, K.; Rasouli, V.; Effiong, E.; Ayoo, J. Study the suitability of neem seed oil for formulation of eco-friendly oil-based drilling fluid. Petrol. Res. 2021, 6, 283-290. https://doi.org/10.1016/j.ptlrs.2021.02.003.

16. Jiang, G.; Dong, T.; Cui, K.; He, Y.; Quan, X.; Yang, L.; Fu, Y. Research status and development directions of intelligent drilling fluid technologies. Petrol. Explor. Dev. 2022, 49, 660-670. https://doi.org/10.1016/S1876-3804(22)60055-7.

17. Kania, D.; Yunus, R.; Omar, R.; Rashid, S.A.; Jan, B.M.; Arsanjani, N. Nonionic polyol esters as thinner and lubricity enhancer for synthetic-based drilling fluids. J. Mol. Liq. 2018, 266, 846-855. https://doi.org/10.1016/j.molliq.2018.07.014.

18. Zhang, J; Xu, M.; Christidis, G.E.; Zhou, C. Clay minerals in drilling fluids: functions and challenges. Clay Miner. 2020, 55, 1-11. https://doi.org/10.1180/clm.2020.10.

19. Huang, X.; Sun, J.; Jiang, G.; Lyu, K.; Wang, J.; Liu, J.; Luo, S. Development of modified fatty acid cutting agent and its application. J. China Univ. Petrol. 2019, 43, 107-112. https://doi.org/10.3969/j. issn.1673-5005.2019.03.012.

20. Ma, C.; Li, L.; Yang, Y.; Hao, W.; Zhang, Q.; Lv, J. Study on the effect of polymeric rheology modifier on the rheological properties of oil-based drilling fluids. IOP Conference 2018, 292, 012106. https://doi.org/10.1088/1757-899X/292/1/012106.

21. Zhuang, G.; Zhang, Z.; Jaber, M. Organoclays used as colloidal and rheological additives in oil-based drilling fluids: an overview. Appl. Clay Sci. 2019, 177, 63-81. https://doi.org/10.1016/j.clay.2019.05.006.

22. Weng, J.; Gong, Z.; Liao, L.; Lv, G.; Tan, J. Comparison of organo-sepiolite modified by different surfactants and their rheological behavior in oil-based drilling fluids. Appl. Clay Sci. 2018, 159, 94−101. https://doi.org/10.1016/j.clay.2017.12.031.

23. Huang, X.; Sun, J.; Lv, K.; Liu, J.; Shen, H. An alternative method to enhance w/o emulsion stability using modified dimer acid and its application in oil-based drilling fluids. RSC Adv. 2018, 8, 26318-26324. https://doi.org/10.1039/ C8RA02293C.

24. Davoodi, S.; Al-Shargabi, M.; Wood, D.A.; Rukavishnikov, V.S.; Minaev, K.M. Synthetic polymers: a review of applications in drilling fluids. Petrol. Sci. 2024, 21, 475-518. https://doi.org/10.1016/j.petsci.2023.08.015.

25. Huang, X.; Jiang, G.; He, Y.; An, Y.; Zhang, S. Improvement of rheological properties of invert drilling fluids by enhancing interactions of water droplets using hydrogen bonding linker. Colloid. Surface. A 2016, 506, 467-475. https://doi.org/10.1016/j.colsurfa.2016.07.011.

26. Liu, L.; Pu, X.; Rong, K.; Yang, Y. Comb-shaped copolymer as filtrate loss reducer for water-based drilling fluid. J. Appl. Polym. Sci. 2018, 135, 45989. https://doi.org/10.1002/app.45989.

27. Zhong, H.; Gao, X.; Qiu, Z.; Sun, B.; Huang, W.; Li, J. Insight into β-cyclodextrin polymer microsphere as a potential filtration reducer in water-based drilling fluids for high temperature application. Carbohyd. Polym. 2020, 249, 116833.https://doi.org/10.1016/j.carbpol.2020.116833.

28. Li, J.; Ji, Y.; Ni, X.; Lv, K.; Huang, X.; Sun, J. A micro-crosslinked amphoteric hydrophobic association copolymer as high temperature- and salt-resistance fluid loss reducer for water-based drilling fluids. Petrol. Sci. 2024, 21, 1980-1991. https://doi.org/10.1016/j.petsci.2024.01.021.

29. El-Sharaky, E. A.; El-Tabey, A. E.; Noor El-Din, M. R.; Al-Sabagh, A. M.; Mishrif, M. R. Polyoxyethylene alkenyl succinate gemini emulsifier for diesel fuel nano emulsions. Energy Fuels. 2019, 33, 5476-5487. https://doi.org/10.1021/acs.energyfuels.9b00646.

30. Liu, Y.; Zhang, Y.; Yan, J.; Song, T.; Xu, Y. Application of thermal resistant gemini surfactants in highly thixotropic water-in-oil drilling fluid system. Open Chem. 2019, 17, 1435-1441. https://doi.org/10.1515/chem-2019-0157.

31. Poling-Skutvik, R.; Di, X.; Osuji, C.O. Correlation of droplet elasticity and volume fraction effects on emulsion dynamics. Soft Matter 2020, 16, 2574-2580. https://doi.org/10.1039/c9sm02394a.

32. Pal, R. Novel shear modulus equations for concentrated emulsions of two immiscible elastic liquids with interfacial tension. J. Non-Newton. Fluid 2002, 105, 21-33. https://doi.org/10.1016/S0377-0257(02)00058-7.

33. Rodrigues, R.K.; Martins, S.F.C.; Naccache, M.F.; Mendes, P.R. Rheological modifiers in drilling fluids. J. Non-Newton. Fluid 2020, 286, 104397. https://doi.org/10.1016/j.jnnfm.2020.104397.

34. Murtaza, M.; Alarifi, S. A.; Kamal, M.S.; Onaizi, S.A.; Al-Ajmi, M.; Mahmoud, M. Experimental investigation of the rheological behavior of an oil-based drilling fluid with rheology modifier and oil wetter additives. Molecules 2021, 26, 4877. https://doi.org/10.3390/molecules26164877.

Current number: