Funct. Mater. 2025; 32 (4): 645-649.

doi:https://doi.org/10.15407/fm32.04.645

Modeling self-diffusion in NpO2 by connecting point defect parameters with bulk properties

Alexander Chroneos1,2, Ioannis L. Goulatis1, Lefteri H. Tsoukalas3, Ruslan V. Vovk4

1Department of Electrical and Computer Engineering, University of Thessaly, 38333 Volos, Greece
2Department of Materials, Imperial College London, London SW7 2BP, United Kingdom
3School of Nuclear Engineering, Purdue University, West Lafayette, In, USA
4Physics Department, V. Karazin Kharkiv National University, Svobody Sq.4, 61077 Kharkiv, Ukraine

Abstract: 

The energetics of oxygen self-diffusion in NpO2 over a range of temperatures is important for nuclear fuel applications. This can be realized using the cBΩ thermodynamic model where the defect Gibbs energy is proportional to the isothermal bulk modulus (B) and the mean volume per atom (Ω). In the present study we employ elastic and expansivity data in the framework of the cBΩ model to derive the oxygen self-diffusion coefficient in NpO2 in the temperature range 2000 K to 2900 K. The predicted results are in agreement with the available experimental and theoretical data.

Keywords: 
NpO<sub>2</sub>; self-diffusion; thermodynamic model
References: 

1. K. Lang, V. Madhavan, J.E. Hoffman, E.W. Hudson, H. Eisaki, S. Uchida, and J.C. Davis, Nature (London), 415 (2002) 412-416.

2. R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, A.V. Bondarenko, I.L. Goulatis, A.V. Samoilov, and A. Chroneos, J. Alloys Compds. 453 (2008) 69-74.

3. R. Devanathan, W.J. Weber, and G.D. Gale, Energy Environ. Sci. 3 (2010) 1551-1559.

4. R.V. Vovk, Z.F. Nazyrov, M.A. Obolenskii, I.L. Goulatis, A. Chroneos, and V.M. Pinto Simoes, Phil. Mag. 91 (2011) 2291-2302.

5. E.N. Sgourou, D. Timerkaeva, C.A. Londos, D. Aliprantis, A. Chroneos, D. Caliste, and P. Pochet, J. Appl. Phys. 113 (2013) 113506.

6. E. Zapata-Solvas, S.R.G. Christopoulos, N. Ni, D.C. Parfitt, D. Horlait, M.E. Fitzpatrick, A. Chroneos, and W.E. Lee, J. Am. Ceram. Soc. 100 (2017) 1377-1387.

7. A.L. Solovjov, L.V. Omelchenko, E.V. Petronko, R.V. Vovk, V.V. Khokevych, and A. Chroneos, Sci. Rep. 9 (2019) 20424.

8. A.L. Solovjov, E.V. Petrenko, L.V. Omelchenko, R.V. Vovk, I.L. Goulatis, and A. Chroneos, Sci. Rep. 9 (2019) 9274.

9. F. Chiabrera, I. Garbayo, L. Lopez-Conesa, G. Martin, A. Ruiz-Caridad, M. Walls, L. Ruiz-Gonzalez, et al., Adv. Mater. 31 (2019) 1805360.

10. F. Baiutti, F. Chiabrera, M. Acosta, D. Diercks, D. Parfitt, J. Santiso, X. Wang, A. Chroneos, et al., Nat. Commun. 12 (2021) 2660.

11. H. Bracht and A. Chroneos, J. Appl. Phys. 104 (2008) 076108.

12. A. Chroneos, J. Appl. Phys. 105 (2009) 056101.

13. A. Chroneos, R.W. Grimes, and H. Bracht, J. Appl. Phys. 105 (2009) 016102.

14. A. Chroneos, R.W. Grimes, and H. Bracht, J. Appl. Phys. 106 (2009) 063707.

15. A. Chroneos and C.A. Londos, J. Appl. Phys. 107 (2010) 093518.

16. A. Chroneos, C.A. Londos, and E.N. Sgourou, J. Appl. Phys. 110 (2011) 093507.

17. A. Chroneos, M.J.D. Rushton, C. Jiang, and L.H. Tsoukalas, J. Nucl. Mater. 441 (2013) 29-39.

18. S.T. Murphy, J. Phys. Commun. 4 (2020) 115003.

19. A. Abdurrazaq, A.T. Raji, and W.E. Meyer, Silicon 13 (2021) 1969-1977.

20. V. Pelenitsyn and P. Korotaev, Comp. Mater. Sci. 207 (2022) 111273.

21. W.E. Lee, M. Gilbert, S.T. Murphy, R.W. Grimes, J. Am. Ceram. Soc. 96 (2013) 2005–2030.

22. S.C. Middleburgh, G.R. Lumpkin, R.W. Grimes, Solid State Ionics 253 (2013) 119–122.

23. W.M.D. Cooper, S.C. Middleburgh, R.W. Grimes, Solid State Ionics 266 (2014) 68–72.

24. M. Lung, O. Gremm, Nucl. Eng. Des. 180 (1998) 133.

25. C. Lombardi, L. Luzzi, E. Padovani, F. Vettraino, Prog. Nucl. Energy 50 (2008) 944.

26. S.T. Murphy, W.M.D. Cooper, R.W. Grimes, Solid State Ionics 267 (2014) 80–87.

27. M. Kazimi, Am. Sci. 91 (2003) 408.

28. R. Hargraves, R.W. Moir, Am. Sci. 98 (2010) 304.

29. A. Chroneos, I. Goulatis, A. Daskalopulu, L.H. Tsoukalas, Prog. Nucl. Energy 164 (2023) 104839.

30. R.A.P. Dwijayanto, F. Miftasani, A.W. Harto, Prog. Nucl. Energy 176 (2024) 105369.

31. P.A. Bellino, H.O. Mosca, S. Jaroszewicz, J. Alloys Compd. 696 (2017) 944-951.

32. P.A. Bellino, private communication (2017).

33. R. Konings, J. Kloosterman, Prog. Nucl. Energy 38 (2001) 331-334.

34. P. Dey, M. Giroux, A. Khaperskaya, J. Laidler, A. Machiels, M. Masson, F. Storrer, G. Uchiyama, Spent Fuel Reprocessing Options, IAEA-TECDOC-1587.

35. V. Smirnov, V. Sobolev, J. Somers, R. Srivenkatesan, A. Stanculescu, V. Subbotin, A. Surenkov, T. Suzuki, M. Szieberth, S. Taczanowski, et al, Advanced Reactor Technology Options for Utilization and Transmutation of Actinides in Spent Nuclear Fuel, IAEA-TECDOC-1626.

36. C.J. Park, K.H. Kang, H.J. Ryu, C.Y. Lee, I.H. Jung, J.S. Moon, J.H. Park, S.H. Na, K.C. Song, Ann. Nucl. Energy 35 (2008) 1805e1812.

37. J. Somers, Energy Procedia 7 (2011) 169e176.

38. C. Walker, G. Nicolaou, J. Nucl. Mater. 218 (1995) 129e138.

39. T. Soga, T. SekinE, K. Tanaka, R. Kitamura, T. Aoyama, J. Power Energy Syst. 2 (2008) 692e702.

40. J. Philibert, Defect Diffus. Forum 249 (2006) 61.

41. P. Varotsos, K. Alexopoulos, Phys. Rev. B 15 (1977) 411.

42. P. Varotsos, K. Alexopoulos, Phys. Rev. B 15 (1977) 2348.

43. P. Varotsos, K. Alexopoulos, Phys. Rev. B 22 (1980) 3130.

44. P. Varotsos, K. Alexopoulos, Thermodynamics of Point Defects and their Relation with the Bulk Properties (North-Holland, Amsterdam, 1986).

45. P. Varotsos, J. Appl. Phys. 101 (2007) 123503.

46. P. Varotsos, Solid State Ionics 179 (2008) 438-441.

47. B.H. Zhang, X.P. Wu, Appl. Phys. Lett. 100 (2012) 051901.

48. F. Vallianatos, V. Saltas, Phys. Chem. Minerals 41, 181 (2014)

49. E.S. Skordas, Solid State Ionics 261 (2014) 26.

50. A. Chroneos, and R.V. Vovk, Solid State Ionics, 274 (2015) 1–3.

51. M.W.D. Cooper, R.W. Grimes, M.E. Fitzpatrick, and A. Chroneos, Solid State Ionics 282 (2015) 26-30.

52. D.C. Parfitt, M.W.D. Cooper, M.J.D. Rushton, S.R.G. Christopoulos, M.E. Fitzpatrick, and A. Chroneos, RSC Adv. 6 (2016) 74018.

53. D. Parfitt, A. Kordatos, P.P. Filippatos, A. Chroneos, Appl. Phys. Rev. 4 (2017) 031305.

54. V. Saltas, D. Horlait, E.N. Sgourou, F. Vallianatos, A. Chroneos, Appl. Phys. Rev. 4 (2017) 41301.

55. P.S. Ghosh, A. Arya, N. Kuganathan, R.W. Grimes, J. Nucl. Mater. 521 (2019) 89-98.

56. A. L. Solovjov, M. A. Tkacheno, R. V. Vovk, and A. Chroneos, Physica C 501 (2014) 24-31.

57. H.A. Tahini, A. Chroneos, S.T. Murphy, U. Schwingenschlögl, and R.W. Grimes, J. Appl. Phys. 114, (2013) 063517.

58. A. Fakharuddin, M. Vasilopoulou, A. Soultati, M.I. Haider, J. Briscoe, V. Fotopoulos, D. Di Girolamo, D. Davazoglou, A. Chroneos, A.B. Yusoff, A. Abate, L. Schmidt-Mende, and M.K. Nazeeruddin, Solar RRL, 5 (2021) 2000555.

Current number: