Funct. Mater. 2025; 32 (4): 650-656.
Modified top-seeding solution growing of KTaO3
V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
The setup for growing single-crystal high-melting-point oxides using top-seeded solution growth method was modified to provide controlled regulation of the crucible bottom temperature. The modified setup was used for growing bulk KTaO3 single crystals, a material with a unique combination of high dielectric constant and other properties in demand in various fields including electronic and optical industries as well as the development of highly sensitive and compact radio-spectroscopic instruments. The quality of KTaO3 single crystals grown in the modified setup was analyzed by several methods, and high crystallinity and purity of the samples were demonstrated.
1. O. Aktas, S. Crossley, M.A. Carpenter, E.K.H. Salje, Polar correlations and defect-induced ferroelectricity in cryogenic KTaO3, Phys. Rev. B. 90 (2014) 165309, https://doi.org/10.1103/PhysRevB.90.165309.
2. C. Ang, A.S. Bhalla, L.E. Cross, Dielectric behavior of paraelectric KTaO3, CaTiO3, and (Ln1/2Na1/2)TiO3 under a dc electric field, Phys. Rev. B. 64 (2001) 184104, https://doi.org/10.1103/PhysRevB.64.184104.
3. G.R. Geyer, B. Riddle, J. Krupka, L.A. Boatner, Microwave dielectric properties of single-crystal quantum paraelectrics KTaO3 and SrTiO3 at cryogenic temperatures, J. Appl. Phys. 97 (2005) 104111, https://doi.org/10.1063/1.1905789g.
4. K. Ueno, I.H. Inoue, T. Yamada, H. Akoh, Y. Tokura, H. Takagi, Field effect transistor based on KTaO3 perovskite, Appl. Phys. Lett. 84 (2004) 3726–3728, https://doi.org/10.1063/1.1703841.
5. C. Liu, X. Yan, D. Jin, Y. Ma, H.-W. Hsiao, Y. Lin, T.M. Bretz-Sullivan, X. Zhou, J. Pearson, B. Fisher, J.S Jiang, W. Han, J.-M. Zuo, J. Wen, D.D. Fong, J. Sun, H. Zhou, A. Bhattacharya, Discovery of two-dimensional anisotropic superconductivity at KTaO3 (111) interfaces, Condensed Matter. Science 371 (2021) 716-721, https://doi.org/10.1126/science.aba5511.
6. L. Hu, D. Sun, H. Zhang, J. Luo, C. Quan, Z. Han, K. Dong, Y. Chen, and M. Cheng, Growth, defects, mechanical, and optical properties of transparent KTaO3 single crystal, J. Mater. Sci.: Mater. Electron. 33 (2022) 1–13, https://doi.org/10.1007/s10854-022-08246–1.
7. K. Fujiura, M. Sasaura, KTaO3 Solid Immersion Lens for Nearfield Optical Disk System, NTT Technical Review. 5 (2007), U0052A https://doi.org/10.53829/ntr200709sp4.
8. Y. Tanga, J. Wanga, X. Wanga, D. Baofeng, S. Tanga, J. Foshee, KTN based electro-optic beam scanner, Proc. of SPIE 7135 (2008) 713538, https://doi.org/10.1117/12.802928.
9. J. Foshee, S. Tang, Y. Tang, X. Wang, B. Duan, A Novel High-Speed Electro-Optic Beam Scanner Based on KTN Crystals, Proc. of SPIE 6709 (2007) 670908, https://doi.org/10.1117/12.731286.
10. X. Wang, X. Mao, P. Chen, Q. Du, Y. Yang, P. Qiao, S. Zhang, Z. Li, R. Zhang, B. Liu, J. Wang, Potassium tantalate niobate crystals: Efficient quadratic electro-optic materials and their laser modulation technology, Journal of Materiomics 9 (2023) 838-854, https://doi.org/10.1016/j.jmat.2023.02.006.
11. B. Liu, H. Zhang, Y. Zhang, X. Lv, Y. Yang, L. Wei, X. Wang, H. Yu, C. Zhang, J. Li, Growth and Laser Modulation Properties of KTa0.63Nb0.37O3 Single Crystals, Acta Physica Polonica A 135 (2019) 396-400, https://doi.org/10.12693/APhysPolA.135.396.
12. I.N. Geifman, I.S. Golovina, V.I. Kofman, R.E. Zusmanov, The use of ferroelectric material for increasing sensitivity of the EPR spectrometers, Ferroelectrics 234 (1999) 81-88, https://doi.org/10.1080/00150199908225283.
13. E. Vahapoglu, J.P. Slack-Smith, R.C.C. Leon, W.H. Lim, F.E. Hudson, T. Day, T. Tanttu, C.H. Yang, A. Laucht, A.S. Dzurak, J.J. Pla, Single-electron spin resonance in a nanoelectronic device using a global field, Sci. Adv. 7 (2021) eabg9158, https://doi.org/10.1126/sciadv.abg9158.
14. V.V. Nosenko, I.P. Vorona, S.V. Lemishko, I.S. Golovina, V.O. Yukhymchuk, S.M. Okulov, V.B. Neimash, V.Yu. Povarchuk, S.O. Solopan, A.G. Belous, Enhancement of radiation-induced EPR signal in bioapatites, Semiconductor Physics, Quantum Electronics & Optoelectronics 25 (2022) 173–178, https://doi.org/10.15407/spqeo25.02.173.
15. G. Shirane, R. Nathans, V. J. Minkiewicz, Temperature Dependence of the Soft Ferroelectric Mode in KTaO3, Phys. Rev. 157 (1967) 396-399, https://doi.org/10.1103/PhysRev.157.396.
16. H. Uwe, T. Sakudo, Electrostriction and Stress-Induced Ferroelectricity in KTaO3, J. Phys. Soc. Jpn. 38 (1975) 183–189, https://doi.org/10.1143/JPSJ.38.183.
17. Y Fujii, T Sakudo, Dielectric and optical properties of KTaO3, Journal of the Physical Society of Japan 41 (1976) 888-893, https://doi.org/10.1143/JPSJ.41.888.
18. B. Hehlen, A.-L. Perou, E. Courtens, R. Vacher, Observation of a Doublet in the Quasielastic Central Peak of Quantum-Paraelectric SrTiO3, Phys. Rev. Lett. 75 (1995) 2416-2419, https://doi.org/10.1103/PhysRevLett.75.2416.
19. H. Vogt, H. Uwe, Hyper-Raman scattering from the incipient ferroelectric KTaO3, Phys. Rev. B 29 (1984) 1030–1034, https://doi.org/10.1103/PhysRevB.29.1030.
20. B. Salce, J.L. Gravilt, L.A. Boatnert, Disorder and thermal transport in undoped KTaO3, Journal of Physics: Condensed Matter. 6 (1994) 4077-4092, https://doi.org/10.1088/0953-8984/6/22/007.
21. S. Zlotnik, P.M. Vilarinho, M.E.V. Costa, J.A. Moreira, A. Almeida, Growth of Incipient Ferroelectric KTaO3 Single Crystals by a Modified Self-Flux Solution Method, Crystal Growth & Design*- 10 (2010) 3397-3404, https://doi.org/10.1021/cg100036v.
22. G. Müller, The Czochralski Method - where we are 90 years after Jan Czochralski´s invention, Cryst. Res. Technol. 42 (2007) 1150–1161, https://doi.org/10.1002/crat.200711001.
23. D.M. Hannon. Electron Paramagnetic Resonance of Fe3+ and Ni3+ in KTaO3. Physical Review. 164 (1967) 366. https://doi.org/10.1103/PhysRev.164.366
24. R.C. Miller, W.G. Spitzer, Far Infrared Dielectric Dispersion in KTaO3, Phys. Rev. 129 (1963) 94-98, https://doi.org/10.1103/PhysRev.129.94.
25. W.G. Nilsen, J.G. Skiner, Raman Spectrum of Potassium Tantalate, J. Chem. Phys. 47 (1967) 1413–1418, https://doi.org/10.1063/1.1712096.
26. S. Husain, A.O.A. Keelani. Structural Properties and Williamson-Hall Analysis of Mn Doped SmFeO3. Mater. Today Proc. 5, 5615–5622 (2018). https://doi.org/https://doi.org/10.1016/j.matpr.2017.12.153.
27. J. Madhavi. Comparison of average crystallite size by X-ray peak broadening and Williamson–Hall and size–strain plots for VO2+ doped ZnS/CdS composite nanopowder. SN Appl. Sci. 1, 1509 (2019). https://doi.org/10.1007/s42452-019–1291-9.
28. A. Goktas, A. Tumbul, Z. Aba, A. Kilic, F. Aslan. Enhancing crystalline/optical quality, and photoluminescence properties of the Na and Sn substituted ZnS thin films for optoelectronic and solar cell applications; a comparative study. Optical Materials 107 (2020) 110073. https://doi.org/10.1016/j.optical.2020.110073.