Funct. Mater. 2025; 32 (4): 650-656.

doi:https://doi.org/10.15407/fm32.04.650

Modified top-seeding solution growing of KTaO3

G.Yu. Rudko, T.V. Sonko, O.Y. Gudymenko,O.M. Hreshchuk, I.P. Vorona, V.M. Dzhagan, V.O. Yukhymchuk

V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine

Abstract: 

The setup for growing single-crystal high-melting-point oxides using top-seeded solution growth method was modified to provide controlled regulation of the crucible bottom temperature. The modified setup was used for growing bulk KTaO3 single crystals, a material with a unique combination of high dielectric constant and other properties in demand in various fields including electronic and optical industries as well as the development of highly sensitive and compact radio-spectroscopic instruments. The quality of KTaO3 single crystals grown in the modified setup was analyzed by several methods, and high crystallinity and purity of the samples were demonstrated.

Keywords: 
Potassium tantalite, modified growth procedure, incipient ferroelectric, lattice dynamics, crystallinity, purity.
References: 

1. O. Aktas, S. Crossley, M.A. Carpenter, E.K.H. Salje, Polar correlations and defect-induced ferroelectricity in cryogenic KTaO3, Phys. Rev. B. 90 (2014) 165309, https://doi.org/10.1103/PhysRevB.90.165309.

2. C. Ang, A.S. Bhalla, L.E. Cross, Dielectric behavior of paraelectric KTaO3, CaTiO3, and (Ln1/2Na1/2)TiO3 under a dc electric field, Phys. Rev. B. 64 (2001) 184104, https://doi.org/10.1103/PhysRevB.64.184104.

3. G.R. Geyer, B. Riddle, J. Krupka, L.A. Boatner, Microwave dielectric properties of single-crystal quantum paraelectrics KTaO3 and SrTiO3 at cryogenic temperatures, J. Appl. Phys. 97 (2005) 104111, https://doi.org/10.1063/1.1905789g.

4. K. Ueno, I.H. Inoue, T. Yamada, H. Akoh, Y. Tokura, H. Takagi, Field effect transistor based on KTaO3 perovskite, Appl. Phys. Lett. 84 (2004) 3726–3728, https://doi.org/10.1063/1.1703841.

5. C. Liu, X. Yan, D. Jin, Y. Ma, H.-W. Hsiao, Y. Lin, T.M. Bretz-Sullivan, X. Zhou, J. Pearson, B. Fisher, J.S Jiang, W. Han, J.-M. Zuo, J. Wen, D.D. Fong, J. Sun, H. Zhou, A. Bhattacharya, Discovery of two-dimensional anisotropic superconductivity at KTaO3 (111) interfaces, Condensed Matter. Science 371 (2021) 716-721, https://doi.org/10.1126/science.aba5511.

6. L. Hu, D. Sun, H. Zhang, J. Luo, C. Quan, Z. Han, K. Dong, Y. Chen, and M. Cheng, Growth, defects, mechanical, and optical properties of transparent KTaO3 single crystal, J. Mater. Sci.: Mater. Electron. 33 (2022) 1–13, https://doi.org/10.1007/s10854-022-08246–1.

7. K. Fujiura, M. Sasaura, KTaO3 Solid Immersion Lens for Nearfield Optical Disk System, NTT Technical Review. 5 (2007), U0052A https://doi.org/10.53829/ntr200709sp4.

8. Y. Tanga, J. Wanga, X. Wanga, D. Baofeng, S. Tanga, J. Foshee, KTN based electro-optic beam scanner, Proc. of SPIE 7135 (2008) 713538, https://doi.org/10.1117/12.802928.

9. J. Foshee, S. Tang, Y. Tang, X. Wang, B. Duan, A Novel High-Speed Electro-Optic Beam Scanner Based on KTN Crystals, Proc. of SPIE 6709 (2007) 670908, https://doi.org/10.1117/12.731286.

10. X. Wang, X. Mao, P. Chen, Q. Du, Y. Yang, P. Qiao, S. Zhang, Z. Li, R. Zhang, B. Liu, J. Wang, Potassium tantalate niobate crystals: Efficient quadratic electro-optic materials and their laser modulation technology, Journal of Materiomics 9 (2023) 838-854, https://doi.org/10.1016/j.jmat.2023.02.006.

11. B. Liu, H. Zhang, Y. Zhang, X. Lv, Y. Yang, L. Wei, X. Wang, H. Yu, C. Zhang, J. Li, Growth and Laser Modulation Properties of KTa0.63Nb0.37O3 Single Crystals, Acta Physica Polonica A 135 (2019) 396-400, https://doi.org/10.12693/APhysPolA.135.396.

12. I.N. Geifman, I.S. Golovina, V.I. Kofman, R.E. Zusmanov, The use of ferroelectric material for increasing sensitivity of the EPR spectrometers, Ferroelectrics 234 (1999) 81-88, https://doi.org/10.1080/00150199908225283.

13. E. Vahapoglu, J.P. Slack-Smith, R.C.C. Leon, W.H. Lim, F.E. Hudson, T. Day, T. Tanttu, C.H. Yang, A. Laucht, A.S. Dzurak, J.J. Pla, Single-electron spin resonance in a nanoelectronic device using a global field, Sci. Adv. 7 (2021) eabg9158, https://doi.org/10.1126/sciadv.abg9158.

14. V.V. Nosenko, I.P. Vorona, S.V. Lemishko, I.S. Golovina, V.O. Yukhymchuk, S.M. Okulov, V.B. Neimash, V.Yu. Povarchuk, S.O. Solopan, A.G. Belous, Enhancement of radiation-induced EPR signal in bioapatites, Semiconductor Physics, Quantum Electronics & Optoelectronics 25 (2022) 173–178, https://doi.org/10.15407/spqeo25.02.173.

15. G. Shirane, R. Nathans, V. J. Minkiewicz, Temperature Dependence of the Soft Ferroelectric Mode in KTaO3, Phys. Rev. 157 (1967) 396-399, https://doi.org/10.1103/PhysRev.157.396.

16. H. Uwe, T. Sakudo, Electrostriction and Stress-Induced Ferroelectricity in KTaO3, J. Phys. Soc. Jpn. 38 (1975) 183–189, https://doi.org/10.1143/JPSJ.38.183.

17. Y Fujii, T Sakudo, Dielectric and optical properties of KTaO3, Journal of the Physical Society of Japan 41 (1976) 888-893, https://doi.org/10.1143/JPSJ.41.888.

18. B. Hehlen, A.-L. Perou, E. Courtens, R. Vacher, Observation of a Doublet in the Quasielastic Central Peak of Quantum-Paraelectric SrTiO3, Phys. Rev. Lett. 75 (1995) 2416-2419, https://doi.org/10.1103/PhysRevLett.75.2416.

19. H. Vogt, H. Uwe, Hyper-Raman scattering from the incipient ferroelectric KTaO3, Phys. Rev. B 29 (1984) 1030–1034, https://doi.org/10.1103/PhysRevB.29.1030.

20. B. Salce, J.L. Gravilt, L.A. Boatnert, Disorder and thermal transport in undoped KTaO3, Journal of Physics: Condensed Matter. 6 (1994) 4077-4092, https://doi.org/10.1088/0953-8984/6/22/007.

21. S. Zlotnik, P.M. Vilarinho, M.E.V. Costa, J.A. Moreira, A. Almeida, Growth of Incipient Ferroelectric KTaO3 Single Crystals by a Modified Self-Flux Solution Method, Crystal Growth & Design*- 10 (2010) 3397-3404, https://doi.org/10.1021/cg100036v.

22. G. Müller, The Czochralski Method - where we are 90 years after Jan Czochralski´s invention, Cryst. Res. Technol. 42 (2007) 1150–1161, https://doi.org/10.1002/crat.200711001.

23. D.M. Hannon. Electron Paramagnetic Resonance of Fe3+ and Ni3+ in KTaO3. Physical Review. 164 (1967) 366. https://doi.org/10.1103/PhysRev.164.366

24. R.C. Miller, W.G. Spitzer, Far Infrared Dielectric Dispersion in KTaO3, Phys. Rev. 129 (1963) 94-98, https://doi.org/10.1103/PhysRev.129.94.

25. W.G. Nilsen, J.G. Skiner, Raman Spectrum of Potassium Tantalate, J. Chem. Phys. 47 (1967) 1413–1418, https://doi.org/10.1063/1.1712096.

26. S. Husain, A.O.A. Keelani. Structural Properties and Williamson-Hall Analysis of Mn Doped SmFeO3. Mater. Today Proc. 5, 5615–5622 (2018). https://doi.org/https://doi.org/10.1016/j.matpr.2017.12.153.

27. J. Madhavi. Comparison of average crystallite size by X-ray peak broadening and Williamson–Hall and size–strain plots for VO2+ doped ZnS/CdS composite nanopowder. SN Appl. Sci. 1, 1509 (2019). https://doi.org/10.1007/s42452-019–1291-9.

28. A. Goktas, A. Tumbul, Z. Aba, A. Kilic, F. Aslan. Enhancing crystalline/optical quality, and photoluminescence properties of the Na and Sn substituted ZnS thin films for optoelectronic and solar cell applications; a comparative study. Optical Materials 107 (2020) 110073. https://doi.org/10.1016/j.optical.2020.110073.

Current number: