Funct. Mater. 2025; 32 (4): 657-662.

doi:https://doi.org/10.15407/fm32.04.657

Functional properties of CsI(Tl) scintillation crystals obtained from deeply purified technological residues.

V.L. Cherginets1, T.V. Ponomarenko1, T.P. Rebrova1, A.G. Varich1, O.L. Rebrov1, E.Yu. Bryleva2, T.V. Sheina2, Ia.A. Boyarintseva1, O.V. Zelenskaya1, O.I. Yurchenko3

1Institute for Scintillation Materials of National Academy of Sciences of Ukraine, Nauky ave. 60, Kharkiv, 61072, Ukraine
2State Scientific Institution ‘Institute for Single Crystals′ of National Academy of Sciences of Ukraine, Nauky ave. 60, Kharkiv, 61072, Ukraine
3V.N. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv, 61022, Ukraine

Abstract: 

The multifold low-temperature mixed crystallization method (LTMC) was used for deep purification of the technological cesium iodide solutions (residues of the large-scale crystal growth). This treatment provided the raw of high-quality suitable for obtaining the low-background CsI crystals due to low content of K and Rb. Even after 30 LTMC cycles the yield of CsI raw is higher compared to a traditional routine of 3 mass crystallizations. The shape of excitation and emission photoluminescence spectra for CsI(Tl) crystals grown from the obtained raw agrees with those from existing literature. The shapes of photoluminescence and X-ray spectra are also close. The functional parameters (light yield, energy resolution) of crystals grown from the raw obtained after 16 LTMC cycles are not worse than those of the commercially available CsI(Tl) crystals.

Keywords: 
crystallization, cesium iodide, thallium, luminescence, scintillation.
References: 

1. Properties of Inorganic compounds. Handbook, Ed. A.I. Efimov et al., Khimiya, Leningrad, 1983.

2. A.Yu. Boyarintsev, V.L. Cherginets, T.V. Ponomarenko, T.P. Rebrova, A.G. Varich, E.Yu. Bryleva, T.V. Sheina, V.V. Varchenko, O.I. Yurchenko. On some features of low-temperature mixed crystallization of CsI solutions obtained from industrial wastes, Funct. Mater. 24 (2017) 640-648. DOI: 10.15407/fm24.04.640.

3. Grinyov, B., Cherginets, V., Rebrova, T., Ponomarenko, T., Varich, A., Taranyuk, V., Rebrova, N., Grippa, O., & Rebrov, O. (2023). Technology for the nondestructive reprocessing of sodium iodide technogenic solutions into a charge for single crystal growth, Science and Innovation, 19 (2023), 63–70. DOI: 10.15407/scine19.01.063.

4. E. Sysoeva, V. Tarasov, O. Zelenskaya. Comparison of the methods for determination of scintillation light yield, Nucl. Instrum. Methods Phys. Res. A. 486 (2002) 67–73. DOI: 10.1016/S0168-9002(02)00676-9.

5. E. Pretsch, T. Clerc, J. Seibl. Tables of Spectral Data for Structure Determination of Organic Compounds, Springer 2020.

6. V. Nagirnyi, A. Stolovich, S. Zazubovich, V. Zepelin, E. Mihokova, E. Nikl, G. P. Pazzi, L. Salvini. Peculiarities of the triplet relaxed excited-state structure and luminescence of a CsI:Tl crystal, J.Phys: Cond. Matt. 7 (1995) 3637-3653. DOI: 10.1088/0953-8984/7/18/026.

7. L.N. Trefilova, T. Charkina, A. Kudin, N. Kosinov, L. Kovaleva, A. Mitichkin. Radiation defects creation in CsI(Tl) crystals and their luminescence properties, J. Lumin. 102–103 (2003) 543–550. DOI: 10.1016/S0022-2313(02)00602-6.

8. T.J. Gao, H.D. Wang, J.-B. Lu, S. Yue, S. Chao, D.-F. Duan. The investigation of the luminescent structure of thallium-doped cesium iodide (CsI:Tl) basing on the first-principles coupled with spectral analysis, J. Phys.: Cond. Matt. 34 (2022). 215901. DOI: 10.1088/1361-648X/ac5a91.

9. M. Gascón, S. Lam, S. Wang, S. Curtarolo, R.S. Feigelson. Characterization of light output and scintillation emission in CsI(Tl), NaI(Tl), and LaBr3(Ce) under isostatic pressure, Radiat. Meas. 56 (2013) 70–75. DOI: 10.1016/j.radmeas.2013.04.017.

Current number: