Funct. Mater. 2025; 32 (4): 663-671.

doi:https://doi.org/10.15407/fm32.04.663

Plasmon-enhanced photocatalysis and antimicrobial activity of Ag/LaVO4:Eu3+ nanoparticle gel for wound healing

V.K. Klochkov1, O.O. Sedyh1, G.V. Grygorova1, N.O. Karpenko1, P.O. Maksimchuk1, S.B. Pavlov2, T.P. Osolodchenko3, S.L. Yefimova1

1Institute for Scintillation Materials NAS of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine
2Kharkiv National Medical University, 4 Nauky ave., 61022 Kharkiv, Ukraine
3I. Mechnikov Institute of Microbiology and Immunology, NAMS of Ukraine, 14-16 Grigory Skovoroda St. 61057 Kharkiv, Ukraine

Abstract: 

The development of multifunctional biomaterials with both photocatalytic and antimicrobial properties is of great importance for biomedical applications such as wound healing. In this study, we synthesized a hybrid gel containing silver nanoparticles (AgNPs) and europium-doped lanthanum orthovanadate nanoparticles (LaVO4:Eu3+ NPs) embedded in a poly(acrylic acid)–carbomer 940 matrix. Optical and photocatalytic experiments revealed that while LaVO4:Eu3+ NPs alone require high-energy UV excitation (\<300 nm) to generate electron–hole pairs, their combination with AgNPs enables efficient plasmon-mediated enhancement under mild UV-A (395 nm) irradiation. This effect is most plausibly attributed to a hot electron injection mechanism, which promotes reactive oxygen species (ROS) formation. Biological assays demonstrated that the Ag/LaVO4:Eu3+ NPs gel completely inhibited the growth of Staphylococcus aureus ATCC 25923 after only 10 minutes of UV-A exposure, with no bacterial recovery observed after 4 hours. The interplay of photocatalysis, photothermal activity, and intrinsic antimicrobial properties of AgNPs and LaVO4:Eu3+ contributes to the pronounced and sustained antibacterial effect. Considering the urgent challenge of antibiotic resistance, plasmon-mediated photocatalysis in multifunctional nanocomposite gels provides a powerful alternative strategy for infection control and wound healing applications.

Keywords: 
plasmon-mediated photocatalysis, Ag/LaVO<sub>4</sub>:Eu<sup>3+</sup> NPs gel, nanoparticles, antimicrobial activity, soft UV-A irradiation
References: 

1. S.L. Sim, S. Kumari, S. Kaur, K. Khosrotehrani, Macrophages in skin wounds: functions and therapeutic potential, Biomolecules 12 (2022) 11. https://doi.org/10.3390/biom12111604

2. Y.H. Almadani, J. Vorstenbosch, P.G. Davison, A.M. Murphy, Wound Healing: A Comprehensive Review, Semin. Plast. Surg. 35 (2021) 141–144. https://doi.org/10.1055/s-0041-1731681

3. C.K. Sen, G.M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T.K. Hunt, F. Gottrup, G.C. Gurtner, M.T. Longaker, Human skin wounds: A major and snowballing threat to public health and the economy, Wound Repair Regen. 17 (2009) 763–771. https://doi.org/10.1111/j.1524-475X.2009.00543.x

4. I. Delgado-Enciso, V.M. Madrigal-Perez, A. Lara-Esqueda, M.G. Diaz-Sanchez, J. Guzman-Esquive, L.E. Rosas-Vizcaino, et al., Topical 5% potassium permanganate solution accelerates the healing process in chronic diabetic foot ulcers, Biomed. Rep. 8 (2018) 156–159. https://doi.org/10.3892/br.2018.1038

5. P. Rajput, K.S. Nahar, K.M. Rahman, Evaluation of antibiotic resistance mechanisms in gram-positive bacteria, Antibiotics (Basel) 13 (2024) 1197. https://doi.org/10.3390/antibiotics13121197

6. P. Bhowmik, B. Modi, P. Roy, A. Chowdhury, Strategies to combat Gram-negative bacterial resistance to conventional antibacterial drugs: A review, Osong Public Health Res. Perspect. 14 (2023) 333–346. https://doi.org/10.24171/j.phrp.2022.0323

7. A. Gupta, P. Avci, T. Dai, Y.-Y. Huang, M.R. Hamblin, Ultraviolet radiation in wound care: sterilization and stimulation, Adv. Wound Care 2 (2013) 422–437. https://doi.org/10.1089/wound.2012.0406

8. J. Inkaran, A. Tenn, A. Martyniuk, F. Farrokhyar, A. Cenic, Does UV light as an adjunct to conventional treatment improve healing and reduce infection in wounds? A systematic review, Adv. Skin Wound Care 34 (2021) 1–6. https://doi.org/10.1097/01.ASW.0000734031.18241.c3

9. A.-G. Niculescu, A.M. Grumezescu, Photodynamic therapy—an up-to-date review, Appl. Sci. 11 (2021) 3626. https://doi.org/10.3390/app11083626

10. T. Sangnim, V. Puri, D. Dheer, D.N. Venkatesh, K. Huanbutta, A. Sharma, Nanomaterials in the wound healing process: new insights and advancements, Pharmaceutics 16 (2024) 300. https://doi.org/10.3390/pharmaceutics16020300

11. H.F. Hetta, Y.N. Ramadan, A.I. Al-Harbi, E.A. Ahmed, B. Battah, N.H. Abd Ellah, S. Zanetti, M.G. Donadu, Nanotechnology as a promising approach to combat multidrug resistant bacteria: a comprehensive review and future perspectives, Biomedicines 11 (2023) 413. https://doi.org/10.3390/biomedicines11020413

12. A. Onishchenko, V. Myasoedov, S. Yefimova, O. Nakonechna, V. Prokopyuk, D. Butov, U. Kökbaş, V. Klochko, P. Maksimchuk, N. Kavok, A. Tkachenko, UV light-activated GdYVO4:Eu3+ nanoparticles induce reactive oxygen species generation in leukocytes without affecting erythrocytes in vitro, Biol. Trace Elem. Res. (2021). https://doi.org/10.1007/s12011-021-02867-z

13. S.L. Yefimova, P.O. Maksimchuk, V. Seminko, N.S. Kavok, V.K. Klochkov, K.A. Hubenko, A.V. Sorokin, I.Y. Kurilchenko, Y.V. Malyukin, Janus-faced redox activity of LnVO4:Eu3+ (Ln = Gd, Y, La) nanoparticles, J. Phys. Chem. C 123 (2019) 15323–15329. https://doi.org/10.1021/acs.jpcc.9b02345

14. Y. Kot, V. Klochkov, V. Prokopiuk, O. Sedyh, G. Grygorova, N. Karpenko, K. Kot, A. Onishchenko, S. Yefimova, A. Tkachenko, GdVO4:Eu3+ and LaVO4:Eu3+ Nanoparticles exacerbate oxidative stress in L 929 cells: potential implications for cancer therapy, Int. J. Mol. Sci. 25 (2024) 11687. https://doi.org/10.3390/ijms252111687

15. S. Gonca, S. Yefimova, N. Dizge, A. Tkachenko, S. Özdemir, V. Prokopiuk, V. Klochkov, N. Kavok, A. Onishchenko, P. Maksimchuk, D. Butov, K. Ocakoglu, Antimicrobial effects of nanostructured rare-earth-based orthovanadates, Curr. Microbiol. 79 (2022) 254. https://doi.org/10.1007/s00284-022-02947-w

16. Y.V. Nikitchenko, V.K. Klochkov, N.S. Kavok, N.A. Karpenko, S.L. Yefimova, I.V. Nikitchenko, A.I. Bozhkov, Age-related effects of orthovanadate nanoparticles involve activation of GSH-dependent antioxidant system in liver mitochondria, Biol. Trace Elem. Res. 199 (2021) 649–659. https://doi.org/10.1007/s12011-020-02241-0

17. Y.V. Nikitchenko, V.K. Klochkov, N.S. Kavok, K.A. Averchenko, N.A. Karpenko, I.V. Nikitchenko, S.L. Yefimova, A.I. Bozhkov, Anti-aging effects of antioxidant rare-earth orthovanadate nanoparticles in Wistar rats, Biol. Trace Elem. Res. 199 (2021) 4183–4192. https://doi.org/10.1007/s12011-020-02527-3

18. Y. Nikitchenko, V. Klochkov, N. Kavok, N. Karpenko, I. Nikitchenko, S. Yefimova, A. Bozhkov, Comparative studies of orthovanadate nanoparticles and metformin on life quality and survival of senile Wistar rats, Biol. Trace Elem. Res. 200 (2022) 1237–1247. https://doi.org/10.1007/s12011-021-02707-0

19. J.M. Carvalho-Silva, A. Cândido dos Reis, Anti-inflammatory action of silver nanoparticles in vivo: Systematic review and meta-analysis, Heliyon 10 (2024) e34564. https://doi.org/10.1016/j.heliyon.2024.e34564

20. A. Luceri, R. Francese, D. Lembo, M. Ferraris, C. Balagna, Silver Nanoparticles: Review of antiviral properties, mechanism of action and applications, Microorganisms 11 (2023) 629. https://doi.org/10.3390/microorganisms11030629

21. V. Dhapte, S. Kadam, A. Moghe, V. Pokharkar, Probing the wound healing potential of biogenic silver nanoparticles, J. Wound Care 23 (2014) 431–436. https://doi.org/10.12968/jowc.2014.23.9.431

22. M. Rybka, L. Mazurek, Beneficial effect of wound dressings containing silver and silver nanoparticles in wound healing—from experimental studies to clinical practice, Life 13 (2023) 69. https://doi.org/10.3390/life13010069

23. A. Huignard, V. Buissette, A.C. Franville, T. Gacoin, J.P. Boilot, Emission processes in YVO4:Eu nanoparticles, J. Phys. Chem. B 107 (2003) 6754–6759. https://doi.org/10.1021/jp0342226

24. V.K. Klochkov, A.I. Malyshenko, O.O. Sedyh, Y.V. Malyukin, Wet-chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO4:Eu3+ (Re = La, Gd, Y) with rod-like and spindle-like shape, Funct. Mater. 1 (2011) 111–115.

25. G. Grygorova, V. Klochkov, O. Sedyh, Y. Malyukin, Aggregative stability of colloidal ReVO4:Eu3+ (Re = La, Gd, Y) nanoparticles with different particle sizes, Colloids Surf. A 457 (2014) 495–501. https://doi.org/10.1016/j.colsurfa.2014.04.047

26. A. Loiseau, V. Asila, G. Boitel-Aullen, M. Lam, M. Salmain, S. Boujday, Silver-based plasmonic nanoparticles and their use in biosensing, Biosensors 9 (2019) 78. https://doi.org/10.3390/bios9020078

27. V. Klochkov, Comparative analysis of photocatalytic activity of aqueous colloidal solutions of ReVO4:Eu3+ (Re = La, Gd, Y), CePO4:Tb, CeO2 and C60, J. Photochem. Photobiol. A Chem. 310 (2015) 128–133. https://doi.org/10.1016/j.jphotochem.2015.04.005

28. S.L. Yefimova, P.O. Maksimchuk, K.A. Hubenko, V.K. Klochkov, I.A. Borovoy, A.V. Sorokin, Y.V. Malyukin, Untangling the mechanisms of GdYVO4:Eu3+ nanoparticle photocatalytic activity, Colloids Surf. A 577 (2019) 630–636. https://doi.org/10.1016/j.colsurfa.2019.06.066

29. G. Pulido-Reyes, I. Rodea-Palomares, S. Das, T.S. Sakthivel, F. Leganes, R. Rosal, S. Seal, F. Fernandez-Pinas, Untangling the biological effects of cerium oxide nanoparticles: The role of surface valence states, Sci. Rep. 5 (2015) 15613. https://doi.org/10.1038/srep15613

30. Y. Li, W. Zhang, J. Niu, Y. Chen, Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles, ACS Nano 6 (2012) 5164–5175. https://doi.org/10.1021/nn300934k

31. G. Rothenberger, J. Moser, M. Grätzel, K. Devendra, N. Serpone, D.K. Sharma, Charge carrier trapping and recombination dynamics in small semiconductor particles, J. Am. Chem. Soc. 107 (1985) 8054–8059. https://doi.org/10.1021/ja00312a043

32. M.L. de Souza, D.P. dos Santos, P. Corio, Localized surface plasmon resonance enhanced photocatalysis: an experimental and theoretical mechanistic investigation, RSC Adv. 8 (2018) 28753. https://doi.org/10.1039/c8ra03919d

33. T. Kong, A. Liao, Y. Xu, X. Qiao, H. Zhang, L. Zhang, C. Zhang, Recent advances and mechanism of plasmonic metal–semiconductor photocatalysis, RSC Adv. 14 (2024) 17041. https://doi.org/10.1039/d4ra02808b

34. L. Zhou, Q. Huang, Y. Xia, Plasmon-induced hot electrons in nanostructured materials: generation, collection, and application to photochemistry, Chem. Rev. 124 (2024) 8597–8619. https://doi.org/10.1021/acs.chemrev.4c00165

35. A. Loiseau, V. Asila, G. Boitel-Aullen, M. Lam, M. Salmain, S. Boujday, Silver-based plasmonic nanoparticles for and their use in biosensing, Biosensors 9 (2019) 78. https://doi.org/10.3390/bios9020078

36. A. Huignard, V. Buissette, A.C. Franville, T. Gacoin, J.P. Boilot, Emission processes in YVO4:Eu nanoparticles, J. Phys. Chem. B 107 (2003) 6754–6759. https://doi.org/10.1021/jp0342226

37. M. Anitha, P. Ramakrishnan, A. Chatterjee, G. Alexander, H. Singh, Spectral properties and emission efficiencies of GdVO4 phosphors, Appl. Phys. A 74 (2002) 153–162. https://doi.org/10.1007/s003390100981

38. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide, J. Am. Chem. Soc. 130 (2008) 1676–1680. https://doi.org/10.1021/ja076503

Current number: