Funct. Mater. 2025; 32 (4): 694-704.

doi:https://doi.org/10.15407/fm32.04.694

Bromine-methanol etching of semiconductor crystals Cd1-xZnxTe1-ySey with different selenium concentrations

S.V. Naydenov, G.M. Babenko, O.K. Kapustnyk, I.M. Pritula

Institute for Single Crystals, SSI “Institute for Single Crystals” of NAS of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

The effect of the selenium concentration in the composition of the Cd1-xZnxTe1-ySey semiconductor crystals on their etching with a bromine-methanol solution was studied. A thermodynamic model is proposed to describe the degree of etching of Cd1-xZnxTe1-y and Cd1-xZnxTe1-ySey crystals. A thermodynamic law is obtained for the first time to describe the change in the etching rate of Cd1-xZnxTe1-ySey crystals with different selenium concentrations. Experimental curves of the etching trajectories and rates of Cd1-xZnxTe1-ySey crystal samples with nominal x ≈ 0.1 and selenium concentrations of y=0, y=0.02, y=0.06, and y=0.1 using 5% bromine-methanol solutions were constructed. The average etching rates were 24 μm/min, 18 μm/min, 15 μm/min, and 13 μm/min. The threshold effect of a strong decrease in the etching rate upon transition from ternary Cd1-xZnxTe1-y to quaternary Cd1-xZnxTe1-ySey crystals, associated with hardening of the crystal structure, was identified and theoretically explained. The obtained experimental data are in good agreement with the theoretical estimates and will be useful for choosing the optimal regimes of crystal treatment.

Keywords: 
Semiconductors II-VI, CdZnTeSe crystals, Etching, Bromine-methanol solution, Crystal characterization, Processing materials, Damaged layer.
References: 

1. U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, Ge Yang, J. Zazvorka, V. Dedic, J. Franc, R.B. James, Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects, Scientific Reports 9, 7303 (2019). https://doi.org/10.1038/s41598-019-43778-3

2. A. Yakimov, D. Smith, J. Choi, S. Araujo, Growth and characterization of detector-grade CdZnTeSe by horizontal Bridgman technique, Proc. SPIE 11114, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXI, 111141N (9 September 2019); https://doi.org/10.1117/12.2528542

3. U.N. Roy, R.B. James, CdZnTeSe: Recent Advances for Radiation Detector Applications, In: L. Abbene, K. Iniewski (Eds.), High-Z Materials for X-ray Detection, Springer Nature, Cham, Switzerland, 2023, pp. 155-170. https://doi.org/10.1007/978-3-031-20955-0_8

4. J. Franc, P. Moravec, V. Dedic, U. Roy, H. Elhadidy, P. Minarik, V. Sima, Microhardness study of Cd1-x ZnxTe1-ySey crystals for X-ray and gamma ray detectors, Materials Today Communications 24, 101014 (2020). doi: https://doi.org/10.1016/j.mtcomm.2020.101014

5. B. Park, Y. Kim, J. Seo, J. Byun, V. Dedic, J. Franc, A.E. Bolotnikov, R.B. James, K. Kim, Bandgap engineering of Cd1-xZnxTe1-ySey (0

6. R. Gul, U.N. Roy, G.S. Camarda, A. Hossain, G. Yang, P. Vanier. V. Lordi, J. Varley, R. B. James, A comparison of point defects in Cd1-xZnxTe1-ySey crystals grown by Bridgman and traveling heater methods, J. Appl. Phys. 121, 125705 (2017). https://doi.org/10.1063/1.4979012

7. S.K. Chaudhuri, M. Sajjad, J.W. Kleppinger, K.C. Mandal, Charge transport properties in CdZnTeSe semiconductor room-temperature γ-ray detectors, J. Appl. Phys. 127, 245706 (2020). https://doi.org/10.1063/5.0006227

8. S. U. Egarievwe, U.N. Roy, E.O. Agbalagba, B.A. Harrison, C.A. Goree, E.K. Savage, R.B. James, Optimizing CdZnTeSe Frisch-Grid Nuclear Detector for Gamma-Ray Spectroscopy, IEEE Access 8, 137530-137539, (2020). https://doi.org/10.1109/ACCESS.2020.3012040

9. O. Sik, L. Skvarenina, O. Caha, P. Moravec, P. Skarvada, E. Belas, L. Grmela, Determining the sub-surface damage of CdTe single crystals after lapping, Journal of Materials Science: Materials in Electronics 29, 9652-9662 (2018). https://doi.org/10.1007/s10854-018-9002-7

10. O. Grimm, Spectral signature of near-surface damage in CdTe X-ray detectors, Nuclear Inst. and Methods in Physics Research Sec. A 953, 163104 (2020). https://doi.org/10.1016/j.nima.2019.163104

11. S.U. Egarievwe, U.N. Roy, P.L. Alexander, M.B. Israel, A.H. Davis, E.O. Agbalagba, R.B. James, Characterization of CdZnTeSe Planar and Frisch-Grid Nuclear Detectors, 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Boston, MA, USA, 2020, pp. 1-3. https://doi.org/10.1109/NSS/MIC42677.2020.9507996

12. E.O. Agbalagba, M.L. Drabo, S.U. Egarievwe, U.N. Roy, A.H. Davis, M.B. Israel, P.L. Alexander, R.B. James, Characterization of CdZnTeSe Nuclear Detector Chemically Etched in Bromine Methanol, Materials Sciences and Applications 12, 363-373 (2021). https://doi.org/10.4236/msa.2021.128025

13. Y. Kim, J. Ko, J. Byun, J. Seo, H.M. Park, B. Park, Characterization of high Zn content Cd0.87Zn0.13Te0.98Se0.02 grown using Bridgman technique, Applied Radiation and Isotopes 211, 111383 (2024). https://doi.org/10.1016/j.apradiso.2024.111383

14. S.V. Naydenov, I.M. Pritula, Hardening of multi-component CdZnTeSe solid solutions: a theoretical approach, Appl. Phys. A 129, 812 (2023). https://doi.org/10.1007/s00339-023-07109-8

15. Z. Zhang, B. Wang, P. Zhou, R. Kang, B. Zhang, D. Guo, A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers, Scientific Reports 6, 26891 (2016). https://doi.org/10.1038/srep26891

16. Hossain, S. Babalola, A.E. Bolotnikov, G.S. Camarda, Y. Cui, G. Yang, M. Guo, D. Kochanowska, A. Mycielski, A. Burger, R.B. James, Effect of chemical etching on the surface roughness of CdZnTe and CdMnTe gamma radiation detectors, Proc. of SPIE 7079, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics X, 70791E (2008). https://doi.org/10.1117/12.796797

17. M.V. Chayka, Z.F. Tomashyk, V.M. Tomashyk, G.P.Malanych, A.A. Korchovyi, Optimization of bromine-emerging etching compositions K2Cr2O7-HBr-ethylene glycol for forming a polished surface of CdTe, ZnxCd1-xTe and CdxHg1-xTe, Functional Materials 26 (1), 189-196 (2019). https://doi.org/10.15407/fm26.01.189

18. R.O. Denysiuk, V.M. Tomashyk, O.M. Kaminskiy, I.O. Shelyuk, S.V. Pysarenko, O.V. Martsenyuk, The chemical etching of CdTe, ZnxCd1-xTe and CdxHg1-xTe single crystals with HNO3–KI–dimethylformamide solutions, Ukrainian Journal of Natural Sciences 3, 155-166 (2023). http://doi.org/10.35433/naturaljournal.3.2023.155-166 [in Ukrainian]

19. P. Atkins, J. de Paula, J. Keeler, Physical Chemistry, 12th edition, Oxford University Press, New York, 2023.

20. S.V. Naydenov, O.K. Kapustnyk, I.M. Pritula, D.S. Sofronov, I.S. Terzin, N.O. Kovalenko, Quaternary crystals CdZnTeSe: Growth via the vertical Bridgman method with different compositions of raw materials (submitted to publication in Functional Materials).

21. M. Unal, M. Can Karaman, G. Celik, O. Tuzel, O.B. Balbasi, A. Merve Genc, R. Turan, Surface and interface chemistry of bromine-methanol-etched Cd0.9Zn0.1Te crystals, Surface Interface and Analysis 56 (10), 713-719 (2024). https://doi.org/10.1002/sia.7338

22. Z.F. Tomashik, Ye.O. Bilevych, P.I. Feichuk, V.M. Tomashik, Chemical etching of CdTe, CdxHg1-xTe, ZnxCd1-xTe and Te in the HNO3–HCl–citric acid, Functional Materials 12 (2), 396-400 (2005). http://www.functmaterials.org.ua/contents/12-2/fm122-39.pdf

Current number: