Funct. Mater. 2025; 32 (4): 705-714.

doi:https://doi.org/10.15407/fm32.04.705

3D printing of a scintillation element for thermal neutron detection based on ZnS:Ag/B2O3

M.L. Sibilyev, A.Yu. Boyarintsev, O.V. Kolesnikov,V.O. Novgorodtsev, T.G. Sibilieva

Institute for Scintillation Materials, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine, 61072 Kharkiv, Ukraine, Nauky Ave., 60

Abstract: 

A new method of creating a multilayer scintillation element for the registration of thermal neutrons using 3D printing technology on an FDM printer has been developed. The influence of thermophysical parameters of printing materials on the geometric shape and functional properties of the printed product was investigated. Optimal settings of the printing technology were selected. Samples of the scintillation element, which consists of layers of light guides alternating with scintillator layers, have been produced. Polystyrene was used as the light guide. A composite material based on polystyrene with a filler of zinc sulfide powder activated by silver, with the addition of a boron oxide (B2O3) neutron converter – ZnS:Ag/B2O3 – was used as a scintillator. The use of 3D printing with two materials in a single technological cycle made it possible to significantly simplify the process of creating a scintillation element compared to traditional technologies. The thermal neutron registration efficiency of the scintillation element sample created using 3D printing technology is 68%, which is comparable to the modern analogs of solid-state detectors created using traditional technology.

Keywords: 
3D printing, FDM, ZnS:Ag, boron oxide, neutron converter, scintillation material, scintillation element, efficiency of thermal neutron registration, thermophysical parameters
References: 

1. M.G. Paff, S.D. Clarke, R.T. Kouzes, и S.A. Pozzi, «Fast and thermal neutron detectors for radiation portal monitors», IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2017. doi: 10.1109/NSSMIC.2017.8532639.

2. Kouzes, Richard T. “The 3He Supply Problem.” (PNNL-18388), Pacific Northwest National Lab., Richland, WA (United States), May 2009. https://doi.org/10.2172/956899

3. K.A. Guzman-Garcia, H.R. Vega-Carrillo, E. Gallego, J.A. Gonzalez-Gonzalez, A. Lorente, S. Ibañez-Fernandez, «10B+ZnS(Ag) as an alternative to 3 He-based detectors for Radiation Portal Monitors», EPJ Web Conf., т. 153, с. 07008, 2017, doi: 10.1051/epjconf/201715307008.

4. B.M. van der Ende, L.Li, D.Godin, B.Sur, «Stand-off nuclear reactor monitoring with neutron detectors for safeguards and non-proliferation applications», Nat. Commun., vol. 10, Article number: 1959 (2019), doi: 10.1038/s41467-019-09967-4.

5. T. Kojima, M. Katagiri, N. Tsutsui, K. Imai, M. Matsubayashi, и K. Sakasai, «Neutron scintillators with high detection efficiency», Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 529, is. 1–3, 21 August 2004, p. 325-328, doi: 10.1016/j.nima.2004.05.005.

6. T. Tojo, T. Nakajima, «Preparation of thermal neutron scintillators based on a mixture of ZnS(Ag), 6LiF and polyethylene», Nucl. Instrum. Methods, vol. 53, p. 163–166, 1967, doi: 10.1016/0029-554X(67)91347-X.

7. R.T. Kouzes, J.H. Ely, L.E. Erikson, W.J. Kernan, D.C. Stromswold, M.L. Woodring, «Full Scale Coated Fiber Neutron Detector Measurements», PNNL-19264, 976988, 2010. doi: 10.2172/976988.

8. V. Tarasov, O. Zelenskaya, O. Shpilinskaja, L. Trefilova, L. Andruschenko, L. Borysova, Yu. Hapon., «Preparation and characterization of 6LiF/ZnS(Ag) scintillator with varying granulometry», Funct. Mater., vol. 31, p. 153–162, 2024, doi: 10.15407/fm31.02.153.

9. J. Siebach, « Characterization of He-3 Detectors Typically Used in International Safeguards Monitoring», Department of Physics and Astronomy Brigham Young University, Bachelor′S thesis, August 2010.

10. Richard T. Kouzes, James H. Ely, Luke E. Erikson, Warnick J. Kernan, Azaree T. Lintereur, Edward R. Siciliano, Daniel L. Stephens, David C. Stromswold, Renee M. Van Ginhoven, Mitchell L. Woodring, «Neutron detection alternatives to 3He for national security applications», Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol.. 623, is. 3, p. 1035–1045, 2010, doi: 10.1016/j.nima.2010.08.021.

11. T. Gürdal, H. Yücel, «Design and Development of a Portable Neutron Detection System Based on a 6Li-Doped ZnS(Ag) Scintillator», Nucl. Technol., vol. 211, is. 5, p. 1056–1065, 2025, doi: 10.1080/00295450.2024.2370701.

12. P.M. Zhmurin, V.L. Cherginets, V.O. Tarasov, A.Yu. Boyarintsev, T.G. Sibilieva, M.L. Sibiliev, D.A. Yelisieiev, O.V. Yelisieieva, V.D. Alekseev, Yu.O. Hurkalenko, «Scintillation element for thermal neutron registration», Funct. Mater., 2025; 32 (2): 272-276, doi:https://doi.org/10.15407/fm32.02.272

13. Sean Stave, Mary Bliss, Richard Kouzes, Azaree Lintereur, Sean Robinson, Edward Siciliano, Lynn Wood, «LiF/ZnS neutron multiplicity counter», Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 784, p. 208–212, 2015, doi: 10.1016/j.nima.2015.01.039.

14. T. Sibilieva, V. Alekseev, S. Barsuk, S. Berns, E. Boillat, I. Boiaryntseva, A. Boyarintsev, A. Carbone, A. De Roeck, S. Dolan, T. Driuk, A. Gendotti, I. Gerasymov, B. Grynyov, S. Hugon, U. Kose, O. Opolonin, A. Rubbia, D. Sgalaberna, M. Sibilyev, S. Tretyak, T. Weber, J. Wuthrich, X. Zhao, «3D printing of inorganic scintillator-based particle detectors», 2023, JINST 18, P03007. https://doi.org/10.1088/1748-0221/18/03/P03007

15. S. Berns, A. Boyarintsev, S. Hugon, U. Kose, D. Sgalaberna, A. De Roeck, A. Lebedynskiy, T. Sibilieva, P. Zhmurin, «A novel polystyrene-based scintillator production process involving additive manufacturing», J. Instrum., vol. 15, is. 10, 2020, doi: 10.1088/1748-0221/15/10/P10019.

16. Ł. Kapłon a b c, D. Kulig a, S. Beddar d, T. Fiutowski f, W. Górska a f, J. Hajduga and others, «Investigation of the light output of 3D-printed plastic scintillators for dosimetry applications», Radiat. Meas., vol. 158, p. 106864, 2022, doi: 10.1016/j.radmeas.2022.106864.

17. T. Weber, A. Boyarintsev, U. Kose, B. Li, D. Sgalaberna, T. Sibilieva and others, «Additive manufacturing of a 3D-segmented plastic scintillator detector for tracking and calorimetry of elementary particles», Commun. Eng., vol. 4, is. 1, p.1–11, 2025, doi: 10.1038/s44172-025-00371-z.

18. N. Lynch, T. Monajemi, J. L. Robar, «Characterization of novel 3D printed plastic scintillation dosimeters», Biomed. Phys. Eng. Express, vol. 6, is. 5, p. 055014, 2020, doi: 10.1088/2057-1976/aba880.

19. L. Tumarchenko и Y. Vyshnepolskyi, «Evaluation of Fused Deposition Modelling process parameters influence on the porosity of printed parts», Mech. Adv. Technol., vol. 8, is. 3(102), 2024, doi: 10.20535/2521-1943.2024.8.3(102).311016.

20. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, «Additive manufacturing (3D printing): A review of materials, methods, applications and challenges», Compos. Part B Eng., vol. 143, p. 172–196, 2018, doi: 10.1016/j.compositesb.2018.02.012.

21. Q. Sun, G.M. Rizvi, C.T. Bellehumeur, P. Gu, «Effect of processing conditions on the bonding quality of FDM polymer filaments», Rapid Prototyp. J., vol. 14, is. 2, p. 72–80, 2008, doi: 10.1108/13552540810862028.

22. C. Bellehumeur, L. Li, Q. Sun, P. Gu, «Modeling of Bond Formation Between Polymer Filaments in the Fused Deposition Modeling Process», J. Manuf. Process., vol. 6, is. 2, p. 170–178, 2004, doi: 10.1016/S1526-6125(04)70071-7.

23. A. Kallel, I. Koutiri, E. Babaeitorkamani, A. Khavandi, M. Tamizifar, M. Shirinbayan, A. Tcharkhtchi, «Study of Bonding Formation between the Filaments of PLA in FFF Process», Int. Polym. Process., vol. 34, is. 4, p. 434–444, 2019, doi: 10.3139/217.3718.

24. Mehdi Sohrabi, Fereshteh Saheli, Kheirollah Mohammadi, «Synthesis of Silver-Activated Zinc Sulfide (ZnS:Ag) Powder by Thermal Diffusion Method for Production of Thin Film Alpha Scintillators», Journal of Nuclear Energy Science & Power Generation Technology, 2018, 7:2, doi: 10.4172/2325-9809.1000182

25. K. Fukao и Y. Miyamoto, «Glass transitions and dynamics in thin polymer films: Dielectric relaxation of thin films of polystyrene», Phys. Rev. E, т. 61, вып. 2, сс. 1743–1754, фев. 2000, doi: 10.1103/PhysRevE.61.1743.

26. R. D. Priestley, L. J. Broadbelt, J. M. Torkelson, K. Fukao, «Glass transition and alpha -relaxation dynamics of thin films of labeled polystyrene», Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 75, is. 6 Pt 1, p. 061806, 2007, doi: 10.1103/PhysRevE.75.061806.

27. A. Sahnoune, L. Piché, «Glass Transition and Ultrasonic Relaxation in Polystyrene», MRS Online Proc. Libr. OPL, vol. 455, is. 183, 1996, doi: 10.1557/PROC-455-183.

28. J. Rieger, «The glass transition temperature of polystyrene: Results of a round robin test», J. Therm. Anal., vol. 46, is. 3–4, p. 965–972, 1996, doi: 10.1007/BF01983614.

29. G.A. Slack, «Thermal Conductivity of II-VI Compounds and Phonon Scattering by Fe2+ Impurities», Phys. Rev. B6, is. 10, p. 3791–3800, 1972, doi: 10.1103/PhysRevB.6.3791.

30. S. Kasap, P. Capper, «Springer Handbook of Electronic and Photonic Materials.», Springer Handbooks, Springer International Publishing, 2017. doi: 10.1007/978-3-319-48933-9.

31. V.Litichevskyi, V.Tarasov, S.Galkin, O.Lalaiants, E.Voronkin, «Scintillation panels based on zinc selenide for detection alpha radiation», Funct. Mater., vol. 19, is. 4, p. 546–550, 2012, http://www.functmaterials.org.ua/contents/19-4/fm194-22.pdf

32. Daniel C. Harris, Meghan Baronowski, Ladd Henneman, Leonard V. LaCroix, Clyde Wilson, Shelby C. Kurzius and others, «Thermal, Structural, and Optical Properties of Cleartran Multispectral Zinc Sulfide», Optical Engineering 47(11), 2008, doi: 10.1117/1.3006123.

33. M.J. Reiney, M. Tryon, B.G. Achhammer, «Study of degradation of polystyrene, using ultraviolet spectrophotometry», National Bureau of Standards, Vol. 51, No. 3, p. 155, 1953, http://archive.org/details/jresv51n3p155

34. J.D. Peterson, S. Vyazovkin, C.A. Wight, «Kinetics of the Thermal and Thermo-Oxidative Degradation of Polystyrene, Polyethylene and Poly(propylene)», Macromol. Chem. Phys., vol. 202, is. 6, p. 775–784, 2001, https://doi.org/10.1002/1521-3935(20010301)202:6%3C775::AID-MACP775%3E3.0.CO;2-G.

35. AMERICAN NATIONAL STANDARDS INSTITUTE, American National Standard for Dosimetry — Personnel Dosimetry Performance — Criteria for Testing, ANSI-N-13.11-1981, New York (1983)

Current number: