Funct. Mater. 2018; 25 (2): 225-233.

doi:https://doi.org/10.15407/fm25.02.225

Luminescence of praseodymium doped perovskite - like SrLa4Ti5O17 under excitation with VUV and UV synchrotron radiation

S.G.Nedilko, V.Chumak, Yu.Titov

Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601 Kyiv, Ukraine

Abstract: 

The wide-band complex spectra of intrinsic luminescence of undoped SrLa4Ti5O17 compounds are found in range of 350-1100 nm under excitation by the light from ultraviolet and vacuum ultraviolet range (50-334 nm) of synhrotron radiation. The possible origines of the observed luminescence are associated with peculiarities of the structure of the layered perovskite-like SrLa4Ti5O17 compound. So, three luminescence components of the intrinsic luminescence peaked near ~ 530, ~ 830, and ~ 1100 nm have been attributed to the radiation decay of excitons localized on (TiO6)8- molecular groups of three ypes in the lattice of SrLa4Ti5O17. The luminescent features related with 4f→4f and 4f5d→4f radiation transitions in Pr3+ ions are found in addition to mentioned intrinsic emission for the SrLa4Ti5O17 compound doped with Pr3+ ions. Obtained results show the prospects of the SrLa4Ti5O17 compounds doped with Pr3+ ions to be used as luminophores of wide emission spectra.

Keywords: 
perovskite, titanate, praseodymium ion, intrinsic, luminescence.
References: 

1. F.Lichtenberg, A.Herrnberger, K.Wiedenmann et al., Progr. Solid State Chem., 29, 1 (2001).

2. Yu.O.Titov, N.M.Belyavina, V.Ya.Markiv et al., Dopov. Nac. akad. nauk Ukr., 10, 147 (2004).

3. Yu.O.Titov, M.S.Slobodnyak, N.M.Belyavina et al., Dopov. Nac. akad. nauk Ukr., 4, 136 (2005).

4. Yu.O.Titov, N.M.Belyavina, V.Ya.Markiv et al., Dopov. Nac. akad. nauk Ukr., 3, 133 (2014).

5. Yu.O.Titov, M.S.Slobodnyak, V.V.Chumak, Ukr. Phys. J., 72, 3 (2006).

6. Yu.O.Titov, M.S.Slobodnyak, V.V.Chumak, Visnik T. Shevchenko Nation. Univ.. Chem., 43, 5 (2006).

7. Yu.O.Titov, N.M.Belyavina, V.Ya.Markiv et al., Dopov. Nac. akad. nauk Ukr., 10, 153 (2005).

8. S.Okamoto, H.Yamamoto, J. Luminescence, 102-103, 586 (2003).

9. W.F.Zhang, Z.Yin, M.S.Zhang et al., J. Phys.: Condens. Matter, 11, 5655 (1999).

10. P.Bautinaud, E.Pinel, M.Dubois et al., J. Lumin., 111, 69 (2005).

11. W.Strek, D.Hreniak, G.Boulon et al., Opt. Mater., 24, 15 (2003).

12. H.Itoh, T.K.Tamura, F.Kataoka, Jpn. J. Appl. Phys., 38, 6387 (1999).

13. P.Bautinaud, E.Pinel, M.Oubaha et al., Opt. Mater., 28, 13 (2006).

14. M.Trevisani, K.Ivanovskikh, F.Piccinelli, J. Phys.:Conden.Mater, 24, 237 (2012).

15. E.Mihokova, M.Nikl, J.Pejchal et al., Phys. Stat. Sol. (c) 4, 1012 (2007).

16. S.Zhang, J. Luminescence, 40&41, 159 (1988).

17. H.E.Hoefdraad, G.Blasse, Phys. Stat. Sol. (a), 29, K95-K97 (1975).

18. W.T.Yen, W.C.Scjtt, A.L.Schfwlow, Phys. Rev., 136, A271 (1964).

19. Y.Li, J. Luminescence, 40&41, 161 (1988).

20. A.M.Srivastava, S.J.Camardello, H.A.Comanzo, Opt. Mater.. 38, 13 (2016).

21. R.D.Shannon, Acta Crystallogr., A32, 751 (1976).

22. G.Blasse, B.C.Grabmaier, Luminescent Materials, Springer (1994).

23. K.van Benthem, C.Elsasser, R.H.French. J. Appl. Phys., 90, 6156 (2001).

24. A.Rubano, D.Paparo, M.Radovic et al., Appl. Phys. Lett., 92, 021102 (2008).

25. D.Kan, R.Kanda, Y.Kanemitsu et al., Appl. Phys. Lett., 88 191916 (2006).

26. G.Boulon, Rev. Phys. Appl., 21, 689 (1986).

27. E.Antic-Fidancev, M.Lemaitre-Blaise, J.C.Krypa et al., Czech. J. Phys. B., 38, 1268 (1988).

28. G.Zhang, X.Ying, L.Yja et al., J. Luminescence, 59, 315 (1994).

29. W.T.Carnall, P.R.Fields, R.Sarup, J. Chem. Phys., 51, 2587 (1969).

Current number: