Funct. Mater. 2018; 25 (2): 234-240.

doi:https://doi.org/10.15407/fm25.02.234

Effect of electron irradiation on excess conductivity of single Y1Ba2Cu3O7-δ crystals

N.A.Azarenkov1, V.N.Voevodin1,2, R.V.Vovk1, S.R.Vovk1, G.Ya.Khadzhai1, V.V.Sklyar1

1V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2Institute of Solid State Physics, Materials Science and Technologies, NSC-KIPT, 1 Akademichna St., 61108 Kharkiv, Ukraine

Abstract: 

Effect of electron irradiation on the excess conductivity of YBa2Cu3O7-δ single crystals is investigated. It is shown that irradiation with electrons leads to significant expansion of the temperature interval that excess conductivity exists. The excess conductivity Δσ(T) has been revealed to obey an exponential temperature dependence in he broad temperature range Tf < T < T*. The description of the excess conductivity can be interpreted in terms of the mean-field theory where T* is the mean-field ransition temperature to the pseudogap state and Δ*(T) is satisfactory described within the framework of the BCS-BEC crossover heory. The value of the transverse coherence length ξc(0) increases by a factor of 1.4 and the point of 2D-3D crossover shifts with respect to temperature.

Keywords: 
excess conductivity, electron irradiation, YBaCuO single crystals, crossover.
References: 

1. T.A.Friedmann, J.P.Rice, J.Giapintzakis, D.M.Ginsberg, Phys. Rev. B, 39, 4258 (1989).

2. R.V.Vovk, G.Ya.Khadzhai, I.L.Goulatis, A.Chroneos, Physica B, 436, 88 (2014).

3. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Current Appl. Phys., 14, 1779 (2014).

4. A.V.Bondarenko, A.A.Prodan, M.A.Obolenskii et al., Low Temp. Phys., 27, 339 (2001).

5. M.V.Sadovskii, I.A.Nekrasov, E.Z.Kuchinskii et al., Phys. Rev. B, 72, 155105 (2005).

6. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai, O.V.Dobrovolskiy, Solid State Communication, 204, 64 (2015).

7. A.L.Solovyov, L.V.Omelchenko, V.B.Stepanov et al., Phys. Rev. B, 94, 224505 (2016).

8. N.A.Azarenkov, V.N. Voevodin, R.V.Vovk et al., J. Mater. Sci.:Mater. Electr., 28, 15886 (2017).

9. L.G.Aslamazov, A.I.Larkin, Phys. Lett., 26A, 238 (1968).

10. A.L.Solovjov, L.V.Omelchenko, R.V.Vovk et al., Physica B, 493, 58 (2016).

11. H.A.Borges, M.A.Continentino, Solid State Commun. 80, 197 (1991).

12. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Mater. Sci: Mater. in Electron., 18, 811 (2007).

13. L.M.Ferreira, P.Pureur, H.A.Borges, P.Lejay, Phys. Rev. B, 69, 212505 (2004).

14. R.V.Vovk, G.Ya.Khadzhai, O.V.Dobrovolskiy et al., Mod. Phys. Lett. B, 30, 1650188 (2016).

15. W.E.Lawrence, S.Doniach, in: Proc. of the 12th Intern. Conf. on Low Temperature Physics, Kyoto, Japan, 1970, ed. by E.Kanda (Keigaku, Tokyo, 1970), p.361.

16. J.B.Bieri, K.Maki, R.S.Thompson, Phys. Rev. B, 44, 4709 (1991).

17. A.L.Solovjov, M.A.Tkachenko, R.V.Vovk, A.Chroneos, Physica C, 501, 24 (2014). http:dx.doi.org10.1016j.physc.2014.03.004.

18. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Physica B, 422, 33 (2013).

19. R.V.Vovk, Y.I.Boiko, V.V.Bogdanov et al., Physica C, 536, 26 (2013).

20. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., J. Mater. Sci: Mater. Electron. , 25, 5226 (2014).

21. W.K.Kwok, S.Fleshler, U.Welp et al., Phys. Rev. Lett. 69, 3370 (1992).

22. R.V.Vovk, Z.F.Nazyrov, M.A.Obolenskii et al., J. Alloys Compds., 509, 4553 (2011).

23. A.V.Bondarenko, V.A.Shklovskij, R.V.Vovk et al., Low Temp. Phys., 23, 962 (1997).

24. Yu.T.Petrusenko, I.M.Neklyudov, A.N.Sleptsov et al., Physica B, 169, 711 (1991).

25. M.K.Wu, J.R.Ashburn, C.J.Torng et al., Phys. Rev. Lett., 58, 908 (1987).

26. H.Lutgemeier, S.Schmenn, P.Meuffels et al., Physica C, 267, 191 (1996).

27. R.V.Vovk, M.A.Obolenskiy, A.A.Zavgorodniy et al., Physica B, 404, 3516 (2009).

28. Physical Properties High Temperature Superconductors, ed. by D.M.Ginsberg, I.-Singapore: Word Scientific (1989).

29. R.V.Vovk, N.R.Vovk, O.V.Dobrovolskiy et al., J. Low Temp. Phys., 1, 17 (2014). doi 10.1007s10909-014-1121-9.

30. A.V.Bondarenko, A.A.Prodan, Yu.T.Petrusenko et al., Phys. Rev., 64, 092513 (2001) .

31. M.A.Obolenskii, R.V.Vovk, A.V.Bondarenko, N.N.Chebotaev, J. Low Temp. Phys., 32, 571 (2006).

32. J.M.Valles, Jr., A.E.White, K.T.Short et al., Phys. Rev. B, 39, 11599 (1989).

33. T.Siegrist, S.Sunshince, D.W.Murphy et al., PRB, 35, 7137 (1987).

34. B.P.Stojkovic, D.Pines, Phys. Rev. B, 55, 8567 (1997).

35. A.L.Solov'ev, H.U.Habermeier, T.Haage, J. Low Temp. Phys., 28, 144 (2002).

36. G.D.Chryssikos, E.I.Kamitsos, J.A.Kapoutsis et al., Physica C, 254, 62 (1995).

37. R.V.Vovk, M.A.Obolenskii, Z.F.Nazyrov et al., J. Mater. Sci.:Mater. Electr., 23, 1255 (2012). doi 10.1007s10854-011-0582-8.

38. E.Babaev, H.Kleinert, Phys. Rev. B, 59, 12083 (1999).

39. R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 68, 134508 (2003)

40. R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt. Phys. Rev. Lett., 91, 235302 (2003).

41. D.H.S.Smith, R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 72, 054506 (2005).

42. R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 69, 144524 (2004).

43. A.L.Solovjov, L.V.Omelchenko, R.V.Vovk et al., Current Appl. Phys., 16, 931 (2016).

Current number: