Funct. Mater. 2020; 27 4: 754-759.

doi:https://doi.org/10.15407/fm27.04.754

Structure formation of coatings based on Cr, Hf, Ti, Ta, W, Zr and carbon with gradient change of the components concentrations

V.I.Perekrestov, Yu.O.Kosminska, Yu.V.Gannych

Sumy State University, 2 Rimskogo Korsakova Str., 40007 Sumy, Ukraine

Abstract: 

The regularities of structure formation of multilayered functional gradient composites are studied. The composites are fabricated by means of the authors' new technology which is based on ion plasma sputtering of a plate-like target combined of W, Ta, Hf, Ti, Cr, Zr, C in highly pure inert ambient. The elemental distribution in width, phase composition and structural and morphological characteristics of the coatings were studied using X-ray diffraction, EDX and electron microscopy methods. The total functional capabilities of the layers in the produced multicomponent gradient composite and the presence of carbides of a metal mixture in its content indicate the prospects of its possible application as a structural material for nuclear power engineering.

Keywords: 
multicomponent gradient coating, metals, carbon, carbide, elemental composition, phase composition.
References: 
1. FR Patent 3025929 (2016).
 
2. A.S.Kuprin, V.A.Belous, V.V.Bryk et al., Probl. Atom. Sci. Tecnol., 2, 111 (2015).
 
3. J.Bischoff, C.Delafoy, C.Vauglin et al., Nucl. Engin. Technol., 50, 223 (2018).
https://doi.org/10.1016/j.net.2017.12.004
 
4. KR Patent 101691916 (2016).
 
5. K.Daub, S.Y.Persaud, R.B.Rebak et al., Springer Intern. Publ., 2, 215 (2018).
https://doi.org/10.1007/978-3-319-68454-3_19
 
6. S.V.Ivanova, E.M.Glagovskiy, I.A.Khazov et al., Fizika i Khimiya Obrabotki Materialov, 3, 5 (2009).
 
7. F.G.Ferre et al., .Proc. .NEA Intern. Workshop on Structural Materials for Innovative Nuclear Systems, Manchester, UK (2016).
 
8. F.F.Komarov, A.D.Pogrebnyak, S.V.Konstantinov, Techn. Phys., 60, 1519 (2015).
https://doi.org/10.1134/S1063784215100187
 
9. V.V.Uglov, G.Abadias, A.Y.Rovbut et al., Nucl. Instrum. Meth. Phys. Res. B: , 354, 269 (2015).
https://doi.org/10.1016/j.nimb.2014.11.012
 
10. A.D.Pogrebnjak, I.V.Yakushchenko, O.V.Bondar et al., Techn. Phys. Lett., 41, 1054 (2015).
https://doi.org/10.1134/S1063785015110085
 
11. A.D.Pogrebnjak, I.V.Yakushchenko, O.V.Bondar et al., Phys. Solid State, 57, 1559 (2015).
https://doi.org/10.1134/S1063783415080259
 
12. A.D.Pogrebnjak, I.V.Yakushchenko, O.V.Bondar et al., J. Alloys Comp., 679, 255 (2016).
https://doi.org/10.1016/j.jallcom.2016.04.064
 
13. A.D.Pogrebnjak, S.O.Bor'ba, Y.O.Kravchenko et al., J. Superhard Mater., 38, 393 (2016).
https://doi.org/10.3103/S1063457616060034
 
14. V.I.Perekrestov, S.N.Kravchenko, Instrum. Experim. Techn., 3, 123 (2002).

Current number: