1. W.Yantasee, G.E.Fryxell, K.Pattamakomsan et al., J. Hazard. Mater., 366, 677 (2019). https://doi.org/10.1016/j.jhazmat.2018.12.043.
https://doi.org/10.1016/j.jhazmat.2018.12.043 |
|
2. K.Singhal, H.Basu, V.Manisha et al., Desalination, 280, 313 (2011). https://doi.org/10.1016/j.desal.2011.07.016.
https://doi.org/10.1016/j.desal.2011.07.016 |
|
3. M.K.Modi, P.Pattanaik, N.Dash, S.Subramanian, Int. J. Pharm. Sci. Rev. Res., 34, 122 (2015). https://globalresearchonline.net/journalcontents/v34-1/19.pdf. |
|
4. X.Zhanga, Y.Liu, Environ. Sci.:Nano, 7, 1008 (2020). https://doi.org/10.1039/C9EN01341E .
https://doi.org/10.1039/C9EN01341E |
|
5. C.D.Black, A.Paulenova, J.L.Lapka, J. Radioanal. Nucl. Chem., 320, 299 (2019). https://doi.org/10.1007/s10967-019-06483-z.
https://doi.org/10.1007/s10967-019-06483-z |
|
6. Y.V.Konevnik, K.V.Martynov, Y.Yu.Karaseva et al., J. Radioanal. Nucl. Chem., 321, 83 (2019). https://doi.org/10.1007/s10967-019-06569-8 .
https://doi.org/10.1007/s10967-019-06569-8 |
|
7. S.K.Pathak, S.C.Tripathi, A.K.Mahtele et al., J. Radioanal. Nucl. Chem., 308, 47 (2016). https://doi.org/10.1007/s10967-015-4330-z .
https://doi.org/10.1007/s10967-015-4330-z |
|
8. L.Fuks, L.Maskalchuk, I.Herdzik-Koniecko, T.Leontieva, J. Radioanal. Nucl. Chem., 320, 87 (2019). https://doi.org/10.1007/s10967-019-06449-1 .
https://doi.org/10.1007/s10967-019-06449-1 |
|
9. S.C.Tripathi, R.Kannan, P.S.Dhami et al., J. Radioanal. Nucl. Chem., 287, 691 (2011). https://doi.org/10.1007/s10967-010-0949-y .
https://doi.org/10.1007/s10967-010-0949-y |
|
10. Y.Sun, Z.Wu, X.Wang et al., Environ. Sci. Technol., 50, 4459 (2016). https://doi.org/10.1021/acs.est.6b00058 .
https://doi.org/10.1021/acs.est.6b00058 |
|
11. H.S.Hassan, M.I.A.Abdel Maksoud, L.A.Attia, J. Mater. Sci: Mater. Electron., 31, 1616 (2020). https://doi.org/10.1007/s10854-019-02678-y .
https://doi.org/10.1007/s10854-019-02678-y |
|
12. O.B.Mokhodoeva, G.V.Myasoedova, E.A.Zakharchenko, Radiochemistry, 53, 35 (2011). https://doi.org/10.1134/S106636221101005X .
https://doi.org/10.1134/S106636221101005X |
|
13. D.K.Das, S.Kumar, P.N.Pathak et al., J. Radioanal. Nucl. Chem., 289, 137 (2011). https://doi.org/10.1007/s10967-011-1045-7 .
https://doi.org/10.1007/s10967-011-1045-7 |
|
14. V.V.Levenets, A.Yu.Lonin, O.P.Omelnik et al., Probl. At. Sci. Technol. (PAST), 125, 121 (2020). https://doi.org/10.46813/2020-125-121.
https://doi.org/10.46813/2020-125-121 |
|
15. Th.Rabung, M.C.Pierret, A.Bauer et al., Geochim. Cosmochim. Acta, 69, 5393 (2005). https://doi.org/10.1016/j.gca.2005.06.030 .
https://doi.org/10.1016/j.gca.2005.06.030 |
|
16. Y.Tachia, M.Ochs, T.Suyam, J. Nucl. Sci. Technol., 51, 1177 (2014). https://doi.org/10.1080/00223131.2014.914452.
https://doi.org/10.1080/00223131.2014.914452 |
|
17. V.Diesen, K.Forsberg, M.Jonsson, J. Hazard. Mater., 340, 384 (2017). http://dx.doi.org/10.1016/j.jhazmat.2017.07.008.
https://doi.org/10.1016/j.jhazmat.2017.07.008 |
|
18. B.Luckscheiter, M.Nesovic, ?????90, 537 (2002). https://doi.org/10.1524/ract.2002.90.9- 11_2002.537 .
https://doi.org/10.1524/ract.2002.90.9-11_2002.537 |
|
19. S.El Mrabet, M.A.Castro, S.Hurtado et al., Am. Mineral., 99, 696 (2014). http://dx.doi.org/10.2138/am.2014.4665 696 .
https://doi.org/10.2138/am.2014.4665 |
|
20. K.St'astna, P.Distler, J.John, F.Sebesta, J. Radioanal. Nucl. Chem., 312, 685 (2017). http://dx.doi.org/10.1007/s10967-017-5260-8 .
https://doi.org/10.1007/s10967-017-5260-8 |
|
21. M.Ochs, D.Mallants, L.Wang, Sorption Values for Americium. in: Radionuclide and Metal Sorption on Cement and Concrete. Topics in Safety, Risk, Reliability and Quality, 9999 (2016). Springer, Cham, ISBN 978-3-319-23651-3. https://doi.org/10.1007/978-3-319-23651-3 .
https://doi.org/10.1007/978-3-319-23651-3 |
|
22. M.Ding, S.Kelkar, A.Meijer, J. Environ. Radioactivity, 136, 181 (2014). http://dx.doi.org/ 10.1016/j.jenvrad.2014.06.007 .
https://doi.org/10.1016/j.jenvrad.2014.06.007 |
|
23. D.Li, D.I.Kaplan, J. Hazard. Mater., 243, 1 (2012). http://dx.doi.org/10.1016/j.jhazmat. 2012.09.011 . |
|
24. B.Hu, Q.Hub, X.Lib et al., J. Mol. Liq., 229, 6 (2017). http://dx.doi.org/10.1016/j.molliq.2016.12.030.
https://doi.org/10.1016/j.molliq.2016.12.030 |
|
25. C.R.Kumar, V.Vijayakumar, A.Suresh et al., J. Radioanal. Nucl. Chem., 321, 617 (2019). http://dx.doi.org/10.1007/s10967-019-06618-2 .
https://doi.org/10.1007/s10967-019-06618-2 |
|
26. A.S.Suneesh, R.Jain, K.A.Venkatesan et al., Solvent Extr. Ion Exc., 33, 656 (2015). http://dx.doi.org/10.1080/07366299.2015.1082826.
https://doi.org/10.1080/07366299.2015.1082826 |
|
27. P.Zhao, M.Zavarin, R.N.Leif et al., Appl. Geochem., 26, 308 (2011). http://dx.doi.org/ 10.1016/j.apgeochem.2010.12.004 .
https://doi.org/10.1016/j.apgeochem.2010.12.004 |
|
28. I.Sanchez-Garcia, A.Nunez, L.J.Bonales et al., Radiat. Phys. Chem., 165, 108395 (2019). https://doi.org/10.1016/j.radphyschem.2019.108395 .
https://doi.org/10.1016/j.radphyschem.2019.108395 |
|
29. I.D.Troshkina, Ya.A.Obruchnikova, S.M.Pestov, Russ. J. Gen. Chem., 89, 2721 (2019). https://doi.org/10.1134/S107036321912048X.
https://doi.org/10.1134/S107036321912048X |
|
30. A.S.Suneesh, K.V.Syamala, K.A.Venkatesan et al., J. Colloid Interface Sci., 438, 55 (2015). http://dx.doi.org/10.1016/j.jcis.2014.09.076 .
https://doi.org/10.1016/j.jcis.2014.09.076 |
|
31. K.St'astna, J.John, F.Sebesta, M.Vlk, J. Radioanal. Nucl. Chem., 304, 349 (2015). http://dx.doi.org/10.1007/s10967-014-3544-9 .
https://doi.org/10.1007/s10967-014-3544-9 |
|
32. R.B.Gujar, P.K.Mohapatra, RSC Adv., 5, 24705 (2015). http://dx.doi.org/10.1039/c4ra14826f .
https://doi.org/10.1039/C4RA14826F |
|
33. Y.Sun, Q.Wang, C.Chen et al., Environ. Sci. Technol., 46, 6020 (2012). http://dx.doi.org/10.1021/es300720f .
https://doi.org/10.1021/es300720f |
|
34. K.Bhagyashree, A.Kar, S.Kasar et al., J. Radioanal. Nucl. Chem., 299, 1433 (2014). http://dx.doi.org/10.1007/s10967-013-2895-y.
https://doi.org/10.1007/s10967-013-2895-y |
|
35. M.Draye, A.Favre-Reguillon, D.Wruck et al., Sep. Sci. Technol., 36, 899 (2001). http://dx.doi.org/10.1081/SS-100103627.
https://doi.org/10.1081/SS-100103627 |
|
36. A.F.Seliman, J. Radioanal. Nucl. Chem., 292, 729 (2012). http://dx.doi.org/10.1007/ s10967-011-1478-z .
https://doi.org/10.1007/s10967-011-1478-z |
|
37. L.Fuks, A.Oszczak, J.Dudek et al., Int. J. Environ. Sci. Technol. (Tehran), 13, 2339 (2016). http://dx.doi.org/10.1007/s13762-016-1067-3.
https://doi.org/10.1007/s13762-016-1067-3 |
|
38. L.Fuks, I.Herdzik-Koniecko, H.Polkowska-Motrenko, A.Oszczak, Int. J. Environ. Sci. Technol. (Tehran), 15, 2657 (2018). https://doi.org/10.1007/s13762-018-1650-x.
https://doi.org/10.1007/s13762-018-1650-x |
|
39. C.Banerjee, N.Dudwadkar, S.C.Tripathi et al., J. Hazard. Mater., 280, 63 (2014). http://dx.doi.org/10.1016/j.jhazmat.2014.07.026.
https://doi.org/10.1016/j.jhazmat.2014.07.026 |
|
40. J.Krejzler, J.Narbutt, Nukleonika, 48, 171 (2003). http://www.nukleonika.pl/www/back/full/vol48_2003/v48n4p163f.pdf |
|
41. J.Veliscek-Carolan, J. Hazard. Mater., 318, 266 (2016). http://dx.doi.org/10.1016/ j.jhazmat.2016.07.027.
https://doi.org/10.1016/j.jhazmat.2016.07.027 |
|
42. A.S.Kuzenkova, A.Yu.Romanchuk, A.L.Trigub et al., Carbon, 158, 291 (2020). https://doi.org/10.1016/j.carbon.2019.10.003.
https://doi.org/10.1016/j.carbon.2019.10.003 |
|
43. K.Dasthaiah, B.R.Selvan, A.S.Suneesh et al., J. Radioanal. Nucl. Chem., 313, 515 (2017). http://dx.doi.org/10.1007/s10967-017-5314-y .
https://doi.org/10.1007/s10967-017-5314-y |
|
44. A.A.Naser, G.E.Sharaf El-deen, A.A.Bhran et al., J. Ind. Eng. Chem., 32, 264 (2015). http://dx.doi.org/10.1016/j.jiec.2015.08.024.
https://doi.org/10.1016/j.jiec.2015.08.024 |
|
45. S.V.Khimchenko, T.A.Blank, K.N.Belikov et al., Funct. Mater., 24, 706 (2017). http://dx.doi.org/10.15407/fm24.04.706.
https://doi.org/10.15407/fm24.04.706 |
|
46. D.R.Frohlich, U.Kaplan, J. Radioanal. Nucl. Chem., 318, 1785 (2018). https://doi.org/10.1007/s10967-018-6310-6.
https://doi.org/10.1007/s10967-018-6310-6 |
|
47. M.Ho Lee, E.C.Jung, K.Song et al., J. Radioanal. Nucl. Chem., 287, 639 (2011). https://doi.org/10.1007/s10967-010-0899-4 .
https://doi.org/10.1007/s10967-010-0899-4 |
|
48. Y.Sun, D.Pan, X.Wei et al., Environ. Pollut., 266, 115189 (2020). https://doi.org/10.1016/ j.envpol.2020.115189 .
https://doi.org/10.1016/j.envpol.2020.115189 |
|
49. P.K.Verma, P.K.Mohapatra, RSC Adv., 6, 84464 (2016). https://doi.org/10.1039/ C6RA17984C .
https://doi.org/10.1039/C6RA17984C |
|
50. A.Gladysz-Plaska, A.Oszczak, L.Fuks, M.Majdan, Pol. J. Environ. Stud., 25, 2401 (2016). https://doi.org/10.15244/pjoes/62638 .
https://doi.org/10.15244/pjoes/62638 |
|
51. N.Kozai, Sh.Yamasaki, T.Ohnuki, J. Radioanal. Nucl. Chem., 299, 1571 (2014). https://doi.org/10.1007/s10967-013-2799-x.
https://doi.org/10.1007/s10967-013-2799-x |
|
52. P.K.Verma, P.N.Pathak, P.K.Mohapatra et al., Environ. Sci. Process. Impacts, 16, 904 (2014) https://doi.org/10.1039/C3EM00563A.
https://doi.org/10.1039/c3em00563a |
|
53. T.M.Dittrich, H.Boukhalfa, S.D.Ware, P.W.Reimus, J. Environ. Radioactivity, 148, 170 (2015). http://dx.doi.org/10.1016/j.jenvrad.2015.07.001.
https://doi.org/10.1016/j.jenvrad.2015.07.001 |
|
54. T.Yu, Z.Xu, J.Ye, J. Radioanal. Nucl. Chem., 319, 749 (2019). https://doi.org/10.1007/ s10967-018-6386-z .
https://doi.org/10.1007/s10967-018-6386-z |
|
55. L.Fuks, I.Herdzik-Koniecko, Appl. Clay Sci., 161, 139 (2018). https://doi.org/10.1016/j.clay.2018.04.010 .
https://doi.org/10.1016/j.clay.2018.04.010 |
|
56. G.Lujaniene, P.Benes, K.Stamberg, T.Sciglo, J. Environ. Radioactivity, 108, 41 (2012). https://doi.org/0.1016/j.jenvrad.2011.07.012.
https://doi.org/10.1016/j.jenvrad.2011.07.012 |
|
57. R.Kautenburger, K.Brix, C.Hein, Appl. Geochemistry, 109, 104404 (2019). https:// doi.org/10.1016/j.apgeochem.2019.104404 .
https://doi.org/10.1016/j.apgeochem.2019.104404 |
|
58. L.Fuks, I.Herdzik-Koniecko, L.Maskalchuk, T.Leontieva, J. Radioanal. Nucl. Chem., 320, 87 (2017). https://doi.org/10.1016/10.1007/ s13762-017-1597-3 . |
|
59. D.Garcia, J.Lutzenkirchen, V.Petrov et al., Colloids Surf. A Physicochem. Eng. Asp., 578, 123610 (2019). https://doi.org/10.1016/j.colsurfa.2019.123610 .
https://doi.org/10.1016/j.colsurfa.2019.123610 |
|
60. W.Du, X.Liu, L.Tan, J. Radioanal. Nucl. Chem., 292, 1173 (2012). https://doi.org/ 10.1007/s10967-011-1573-1 .
https://doi.org/10.1007/s10967-011-1573-1 |
|
61. A.M.Simmons, L.A.Neymark, Conditions and Processes Affecting Radionuclide Tansport, in: Stuckless, J.S., ed., Hydrology and Geochemistry of Yucca Mountain and Vicinity, Southern Nevada and California: Geological Society of America, Memoir 209, 277 (2012). https://doi.org/10.1130/2012.1209(06) .
https://doi.org/10.1130/2012.1209(06) |
|
62. F.Noli, G.Buema, P.Misaelides, M.Harja, J. Radioanal. Nucl. Chem., 303, 2303 (2015). https://doi.org/10.1007/s10967-014-3762-1 .
https://doi.org/10.1007/s10967-014-3762-1 |
|
63. N.N.Popova, G.L.Bykov, G.A.Petukhova et al., Prot. Met. Phys. Chem. Surf., 49, 304 (2013). https://doi.org/10.1134/S2070205113030131 .
https://doi.org/10.1134/S2070205113030131 |
|
64. A.Yu.Romanchuk, A.S.Slesarev, S.N.Kalmykov et al., Phys. Chem. Chem. Phys., 15, 2321 (2013). https://doi.org/10.1039/c2cp44593j.
https://doi.org/10.1039/c2cp44593j |
|
65. S.Yu, X.Wang, X.Tan, X.Wang, Inorg. Chem. Front., 2, 593 (2015). https://doi.org/ 10.1039/c4qi00221k .
https://doi.org/10.1039/C4QI00221K |
|
66. G.Lujaniene, S.Semcuk, I.Kulakauskaite et al., J. Radioanal. Nucl. Chem., 307, 2267 (2016). https://doi.org/10.1007/s10967-015-4461-2.
https://doi.org/10.1007/s10967-015-4461-2 |
|
67. P.Kumar, A.Sengupta, A.K.Singha Deb, Sk.Musharaf Ali, ChemistrySelect, 2, 975 (2017). https://doi.org/10.1002/slct.201601550.
https://doi.org/10.1002/slct.201601550 |
|
68. A.K.Singh Deb, S.Pahan, K.Dasgupta et al., J. Hazard. Mater., 345, 63 (2018). https://doi.org/10.1016/j.jhazmat.2017.11.003.
https://doi.org/10.1016/j.jhazmat.2017.11.003 |
|
69. M.J.O'Hara, J.C.Carter, C.L.Warner et al., RSC Adv., 6, 105239 (2016). https://doi.org/10.1039/c6ra22262e .
https://doi.org/10.1039/C6RA22262E |
|
70. N.Morelova, N.Finck, J.Lutzenkirchen et al., J. Colloid Interface Sci., 561, 708 (2020). https://doi.org/10.1016/j.jcis.2019.11.047.
https://doi.org/10.1016/j.jcis.2019.11.047 |
|
71. V.G.Petrov, Y.D.Perfiliev, S.K.Dedushenko et al., J. Radioanal. Nucl. Chem., 310, 347 (2016). https://doi.org/10.1007/s10967-016-4867-5.
https://doi.org/10.1007/s10967-016-4867-5 |
|
72. D.Sofronov, A.Krasnopyorova, N.Efimova et al., Process Saf. Environ. Prot., 125, 157 (2019). https://doi.org/10.1016/j.psep.2019.03.013 .
https://doi.org/10.1016/j.psep.2019.03.013 |
|
73. K.Jayachandran, R.D.Bhanushali, I.C.Pius, S.K.Mukerjee, J. Radioanal. Nucl. Chem., 278, 103 (2008). https://doi.org/10.1007/s10967-007-7210-3.
https://doi.org/10.1007/s10967-007-7210-3 |
|
74. A.Ansari, P.K.Mohapatra, V.K.Manchanda, J. Hazard. Mater., 161, 1323 (2009). https:// doi.org/10.1016/j.jhazmat.2008.04.093.
https://doi.org/10.1016/j.jhazmat.2008.04.093 |
|
75. I.M.Zviagin, S.V.Khimchenko, T.A.Blank et al., Funct. Mater., 25, 619 (2018). https://doi.org/10.15407/fm25.03.619 .
https://doi.org/10.15407/fm25.03.619 |
|
76. S.Y.Sayenko, Y.O.Svitlychnyi, V.A.Shkuropatenko et al., Funct. Mater., 27, 39 (2020). https://doi.org/10.15407/fm27.01.39.
https://doi.org/10.15407/fm27.01.39 |
|
77. P.S.Dhami, R.Kannan, P.W.Naik et al., Biotechnol. Lett., 24, 885 (2002). https://doi.org/10.1023/A:1015533129642.
https://doi.org/10.1023/A:1015533129642 |
|
78. P.Kishor, A.Sengupta, V.C.Adya, N.A.Salvi, J. Radioanal. Nucl. Chem., 312, 395 (2017). https://doi.org/10.1007/s10967-017-5214-1.
https://doi.org/10.1007/s10967-017-5214-1 |
|
79. A.Oszczak, L.Fuks, Nukleonika, 60, 927 (2015). https://doi.org/10.1515/nuka-2015- 0155.
https://doi.org/10.1515/nuka-2015-0155 |
|
80. E.S.Kazak, E.G.Kalitina, N.A.Kharitonova et al., Moscow Univ. Geol. Bull., 73, 287 (2018). https://doi.org/10.1007/s10450-019-00133-2.
https://doi.org/10.1007/s10450-019-00133-2 |
|
81. L.Gotzke, G.Schaper, J.Marz et at., Coord. Chem. Rev., 386, 267 (2019). https://doi.org/10.1016/j.ccr.2019.01.006.
https://doi.org/10.1016/j.ccr.2019.01.006 |
|
82. L.A.Attia, M.A.Youssef, O.A.Abdel Moamen, Sep. Sci. Technol., 56, 217 (2019). https://doi.org/10.1080/01496395.2019.1708111.
https://doi.org/10.1080/01496395.2019.1708111 |
|
83. R.R.L.Vidal, J.S.Moraes, Int. J. Environ. Sci. Technol., 16, 1741 (2019). https://doi.org/ 10.1007/s13762-018-2061-8.
https://doi.org/10.1007/s13762-018-2061-8 |
|
|
|
|
|