Funct. Mater. 2015; 22 (1): 5-13.
Effect of high pressure on conductivity in the basal plane of Y1-4PrxBa2Cu3O7-δ single crystals lightly doped of praseodymium
1Physics Department, V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2Ukrainian State Academy of Railway Transport, 7 Feyerbaha Sq., 61050 Kharkiv, Ukraine
Effect of high hydrostatic pressure up to 17 kbar on conductivity of lightly Pr-doped Y1-4PrxBa2Cu3O7-δ (x~0.05) single crystals is investigated. We show that in contrast to non-doped YBa2Cu3O7-δ samples, application of the high pressure leads to a substantial increase of the pressure derivative of the coherence length dξc/dP and temperature shift of 2D-3D crossover point. Possible mechanisms of the influence of the high pressure on the critical temperature and the coherence length are discussed within the frames of a model assuming the presence of singularities in the charge carriers electron spectrum typical for lattices with strong coupling. The excess conductivity Δ σ(T) in Y0.95Pr0.05Ba2Cu3O7-δ has been revealed to obey an exponential dependence in the wide temperature range Tf < T < T*. At this, description of the excess conductivity by the expression Δ σ ~ (1 - T/T*)exp(Δ*ab/T) can be interpreted in terms of the mean-field theory, where T* is the mean-field superconducting transition temperature and pseudogap temperature dependence is satisfactory described within the framework of the BCS-BEC crossover theory. An increase of the applied pressure leads to narrowing of the temperature range of realization of the pseudogap regime, thereby expanding the linear temperature dependence of the basal-plane resistivity ρab(T).
1. J.Ashkenazi, J. Supercond. Nov. Magn., 24, 1281 (2011). http://dx.doi.org/10.1007/s10948-010-0823-8
2. A.L.Solovjov, M.A.Tkachenko, R.V.Vovk, A.Chroneos, Physica C, 501, 24 (2014). http://dx.doi.org/10.1016/j.physc.2014.03.004
3. R.V.Vovk, G.Ya.Khadzhai, I.L.Goulatis, A.Chroneos, Physica B, 436, 88 (2014). http://dx.doi.org/10.1016/j.physb.2013.11.056
4. M.V.Sadovskii, I.A.Nekrasov, E.Z.Kuchinskii et al., Phys. Rev. B, 72, 155105 (2005). http://dx.doi.org/10.1103/PhysRevB.72.155105
5. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Alloys Compd., 485, 121 (2009). http://dx.doi.org/10.1016/j.jallcom.2009.05.132
6. K.Widdera, D.Bernera, H.P.Geserich et al., Physica C, 251, 274 (1995). http://dx.doi.org/10.1016/0921-4534(95)00423-8
7. R.V.Vovk, Z.F.Nazyrov, I.L.Goulatis, A.Chroneos, Physica C, 485, 89 (2013). http://dx.doi.org/10.1016/j.physc.2012.09.017
8. P.W.Anderson, Phys. Rev. Lett., 67, 2092 (1991). http://dx.doi.org/10.1103/PhysRevLett.67.2092
9. R.V.Vovk, N.R.Vovk, O.V.Shekhovtsov et al., Supercond. Sci. Technol., 26, 085017 (2013). http://dx.doi.org/10.1088/0953-2048/26/8/085017
10. M.Akhavan, Physica B, 321, 265 (2002). http://dx.doi.org/10.1016/S0921-4526(02)00860-8
11. A.Chroneos, I.L.Goulatis, R.V.Vovk, Acta Chim. Sloven., 54, 179 (2007).
12. M.K.Wu, J.R.Ashburn, C.J.Torng et al., Phys. Rev. Lett., 58, 908 (1987). http://dx.doi.org/10.1103/PhysRevLett.58.908
13. H.B.Radousky, J. Mater. Res., 7, 1917 (1992). http://dx.doi.org/10.1557/JMR.1992.1917
14. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Solid State Commun., 190, 18 (2014). http://dx.doi.org/10.1016/j.ssc.2014.04.004
15. J.D.Jorgencen, P.Shiyou, P.Lightfoot et al., Physica C, 167, 571 (1990). http://dx.doi.org/10.1016/0921-4534(90)90676-6
16. M.A.Obolenskii, A.V.Bondarenko, R.V.Vovk, A.A.Prodan, Low Temp. Phys., 23, 882 (1997). http://dx.doi.org/10.1063/1.593496
17. S.Sadewasser, J.S.Schilling, A.P.Paulicas, B.M.Veal, Phys. Rev. B, 61, 741 (2000). http://dx.doi.org/10.1103/PhysRevB.61.741
18. R.V.Vovk, G.Ya.Khadzhai, Z.F.Nazyrov et al., Physica B, 407, 4470 (2012). http://dx.doi.org/10.1016/j.physb.2012.07.049
19. L.Mendonca Ferreira et al., Phys. Rev. B, 69, 212505 (2004). http://dx.doi.org/10.1103/PhysRevB.69.212505
20. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Alloys and Compounds, 453, 69 (2008). http://dx.doi.org/10.1016/j.jallcom.2006.11.169
21. R.Griessen, Phys. Rev. B, 36, 5284 (1987). http://dx.doi.org/10.1103/PhysRevB.36.5284
22. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Physica B, 422, 33 (2013). http://dx.doi.org/10.1016/j.physb.2013.04.032
23. D.M.Ginsberg (ed), Physical Properties High Temperature Superconductors, I.- Singapore, Word Scientific (1989).
24. G.Lacayc, R.Hermann, G.Kaestener, Physica C, 192, 207 (1992). http://dx.doi.org/10.1016/0921-4534(92)90762-2
25. A.V.Bondarenko, V.A.Shklovskij, R.V.Vovk et al., Low Temp. Phys., 23, 962 (1997). http://dx.doi.org/10.1063/1.593511
26. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., Modern Phys. Lett. B (MPLB), 25, 2131 (2011). http://dx.doi.org/10.1142/S0217984911027327
27. R.V.Vovk, M.A.Obolenskii, A.V.Bondarenko et al., Acta Phys. Polonica A, 111, 123 (2007). http://dx.doi.org/10.12693/APhysPolA.111.123
28. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Mater. Sci: Mater. Electron., 18, 811 (2007). http://dx.doi.org/10.1007/s10854-006-9086-3
29. R.V.Vovk, G.Ya.Khadzhai, O.V.Dobrovolskiy, Appl. Phys. A (2014) 117:997 -1002 DOI 10.1007/s00339-014-8670-2, http://dx.doi.org/10.1007/s00339-014-8670-2
30. L.Soderholm et al., Nature, 328, 604 (1987). http://dx.doi.org/10.1038/328604a0
31. A.Kebede et al., Phys. Rev. B, 40, 4453 (1991). http://dx.doi.org/10.1103/PhysRevB.40.4453
32. W.L.McMillan, Phys. Rev., 167, 331 (1968). http://dx.doi.org/10.1103/PhysRev.167.331
33. M.A.Obolenskiy, D.D.Balla, A.A.Zavgorodniy et al., Acta Phys. Polonica A, 122, 1111 (2012). http://dx.doi.org/10.12693/APhysPolA.122.1111
34. S.R.Evan, V.K.Ratti, B.L.Gyorffy, J. Phys. F, 3, 199 (1973). http://dx.doi.org/10.1088/0305-4608/3/10/008
35. H.Khosroabadi, M.R.Mohammadi Zaden, M.Akhavan, Physica C, 370, 85 (2002). http://dx.doi.org/10.1016/S0921-4534(01)00920-0
36. S.R.Evan, V.K.Ratti, B.L.Gyorffy, J. Phys. F, 3, 199 (1973). http://dx.doi.org/10.1088/0305-4608/3/10/008
37. V.M.Gvozdicov, Physica C, 235-240, 2127 (1994).
38. A.Perali, G.Varelogiannis, Phys. Rev. B, 61, 3672 (2000). http://dx.doi.org/10.1103/PhysRevB.61.3672
39. U.Welp, M.Grimsditch, S.Flesher et al., Phys. Rev. Lett., 69, 2130 (1992). http://dx.doi.org/10.1103/PhysRevLett.69.2130
40. U.Schwingensclogl, C.Schuster, Appl. Phys. Lett., 100, 253111 (2012). http://dx.doi.org/10.1063/1.4729892
41. R.V.Vovk, Z.F.Nazyrov, M.A.Obolenskii et al., Philosoph. Mag., 91, 2291 (2011). http://dx.doi.org/10.1080/14786435.2011.552893
42. J.L.Tallon, C.Berbhard, H.Shaked et al., Phys. Rev. B, 51, 12911 (1995). http://dx.doi.org/10.1103/PhysRevB.51.12911
43. G.D.Chryssikos, E.I.Kamitsos, J.A.Kapoutsis et al., Physica C, 254, 44 (1995). http://dx.doi.org/10.1016/0921-4534(95)00553-6
44. R.V.Vovk, Z.F.Nazyrov, I.L Goulatis et al., Modern Phys. Lett. B (MPLB), 27, 1350029 (2013). http://dx.doi.org/10.1142/S0217984913500292
45. E.Babaev, H.Kleinert, Phys. Rev. B, 59, 12083 (1999) http://dx.doi.org/10.1103/PhysRevB.59.12083
46. R.V.Vovk, M.A.Obolenskiy, A.A.Zavgorodniy et al., Physica B, 404, 3516 (2009). http://dx.doi.org/10.1016/j.physb.2009.05.047
47. R.V.Vovk, A.A.Zavgorodniy, M.A.Obolenskii et al., Modern Physics Letters B (MPLB), 24, 2295 (2010). http://dx.doi.org/10.1142/S0217984910024675
48. W.E.Lawrence, S.Doniach, Proc. 12th Intern. Conf. Low Temperature Physics, Kyoto, Japan, 1970, edited by E. Kanda, Keigaku, Tokyo (1970), p.361.
49. L.G.Aslamazov, A.I.Larkin, Fiz.Tverd.Tela 10, 1104 (1968)
50. T.A.Friedman, J.P.Rice, J.Giapintzakis, D.M.Ginzberg, Phys. Rev. B, 39, 4258 (1989). http://dx.doi.org/10.1103/PhysRevB.39.4258
51. R.V.Vovk, M.A.Obolenskii, Z.F.Nazyrov, J. Mater Sci.:Mater. Electron., 23, 1255 (2012). http://dx.doi.org/10.1007/s10854-011-0582-8
52. D.H.S.Smith, R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 72, 054506 (2005). http://dx.doi.org/10.1103/PhysRevB.72.054506
53. R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 69, 144524 (2004). http://dx.doi.org/10.1103/PhysRevB.69.144524
54. D.H.S.Smith, R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, New J. Phys., 8, 128 (2006). http://dx.doi.org/10.1088/1367-2630/8/8/128
55. R.V.Vovk, N.R.Vovk, A.V.Samoilov et al., Solid State Commun., 170, 6 (2013). http://dx.doi.org/10.1016/j.ssc.2013.07.011