Funct. Mater. 2015; 22 (1): 5-13.

http://dx.doi.org/10.15407/fm22.01.005

Effect of high pressure on conductivity in the basal plane of Y1-4PrxBa2Cu3O7-δ single crystals lightly doped of praseodymium

G.Ya.Khadzhai1, N.R.Vovk1, R.V.Vovk1,2, S.V.Savich1, M.Kislitsa1, K.A.Kotvitskaya1,2, V.S.Morozov2, J.G.Leniv2, S.S.Timofeev2

1Physics Department, V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2Ukrainian State Academy of Railway Transport, 7 Feyerbaha Sq., 61050 Kharkiv, Ukraine

Abstract: 

Effect of high hydrostatic pressure up to 17 kbar on conductivity of lightly Pr-doped Y1-4PrxBa2Cu3O7-δ (x~0.05) single crystals is investigated. We show that in contrast to non-doped YBa2Cu3O7-δ samples, application of the high pressure leads to a substantial increase of the pressure derivative of the coherence length dξc/dP and temperature shift of 2D-3D crossover point. Possible mechanisms of the influence of the high pressure on the critical temperature and the coherence length are discussed within the frames of a model assuming the presence of singularities in the charge carriers electron spectrum typical for lattices with strong coupling. The excess conductivity Δ σ(T) in Y0.95Pr0.05Ba2Cu3O7-δ has been revealed to obey an exponential dependence in the wide temperature range Tf < T < T*. At this, description of the excess conductivity by the expression Δ σ ~ (1 - T/T*)exp(Δ*ab/T) can be interpreted in terms of the mean-field theory, where T* is the mean-field superconducting transition temperature and pseudogap temperature dependence is satisfactory described within the framework of the BCS-BEC crossover theory. An increase of the applied pressure leads to narrowing of the temperature range of realization of the pseudogap regime, thereby expanding the linear temperature dependence of the basal-plane resistivity ρab(T).

Keywords: 
YBCO single crystals, doping, hydrostatic pressure, fluctuation conductivity, crossover, fluctuation conductivity, pseudogap state.
References: 

1. J.Ashkenazi, J. Supercond. Nov. Magn., 24, 1281 (2011). http://dx.doi.org/10.1007/s10948-010-0823-8

2. A.L.Solovjov, M.A.Tkachenko, R.V.Vovk, A.Chroneos, Physica C, 501, 24 (2014). http://dx.doi.org/10.1016/j.physc.2014.03.004

3. R.V.Vovk, G.Ya.Khadzhai, I.L.Goulatis, A.Chroneos, Physica B, 436, 88 (2014). http://dx.doi.org/10.1016/j.physb.2013.11.056

4. M.V.Sadovskii, I.A.Nekrasov, E.Z.Kuchinskii et al., Phys. Rev. B, 72, 155105 (2005). http://dx.doi.org/10.1103/PhysRevB.72.155105

5. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Alloys Compd., 485, 121 (2009). http://dx.doi.org/10.1016/j.jallcom.2009.05.132

6. K.Widdera, D.Bernera, H.P.Geserich et al., Physica C, 251, 274 (1995). http://dx.doi.org/10.1016/0921-4534(95)00423-8

7. R.V.Vovk, Z.F.Nazyrov, I.L.Goulatis, A.Chroneos, Physica C, 485, 89 (2013). http://dx.doi.org/10.1016/j.physc.2012.09.017

8. P.W.Anderson, Phys. Rev. Lett., 67, 2092 (1991). http://dx.doi.org/10.1103/PhysRevLett.67.2092

9. R.V.Vovk, N.R.Vovk, O.V.Shekhovtsov et al., Supercond. Sci. Technol., 26, 085017 (2013). http://dx.doi.org/10.1088/0953-2048/26/8/085017

10. M.Akhavan, Physica B, 321, 265 (2002). http://dx.doi.org/10.1016/S0921-4526(02)00860-8

11. A.Chroneos, I.L.Goulatis, R.V.Vovk, Acta Chim. Sloven., 54, 179 (2007).

12. M.K.Wu, J.R.Ashburn, C.J.Torng et al., Phys. Rev. Lett., 58, 908 (1987). http://dx.doi.org/10.1103/PhysRevLett.58.908

13. H.B.Radousky, J. Mater. Res., 7, 1917 (1992). http://dx.doi.org/10.1557/JMR.1992.1917

14. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Solid State Commun., 190, 18 (2014). http://dx.doi.org/10.1016/j.ssc.2014.04.004

15. J.D.Jorgencen, P.Shiyou, P.Lightfoot et al., Physica C, 167, 571 (1990). http://dx.doi.org/10.1016/0921-4534(90)90676-6

16. M.A.Obolenskii, A.V.Bondarenko, R.V.Vovk, A.A.Prodan, Low Temp. Phys., 23, 882 (1997). http://dx.doi.org/10.1063/1.593496

17. S.Sadewasser, J.S.Schilling, A.P.Paulicas, B.M.Veal, Phys. Rev. B, 61, 741 (2000). http://dx.doi.org/10.1103/PhysRevB.61.741

18. R.V.Vovk, G.Ya.Khadzhai, Z.F.Nazyrov et al., Physica B, 407, 4470 (2012). http://dx.doi.org/10.1016/j.physb.2012.07.049

19. L.Mendonca Ferreira et al., Phys. Rev. B, 69, 212505 (2004). http://dx.doi.org/10.1103/PhysRevB.69.212505

20. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Alloys and Compounds, 453, 69 (2008). http://dx.doi.org/10.1016/j.jallcom.2006.11.169

21. R.Griessen, Phys. Rev. B, 36, 5284 (1987). http://dx.doi.org/10.1103/PhysRevB.36.5284

22. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Physica B, 422, 33 (2013). http://dx.doi.org/10.1016/j.physb.2013.04.032

23. D.M.Ginsberg (ed), Physical Properties High Temperature Superconductors, I.- Singapore, Word Scientific (1989).

24. G.Lacayc, R.Hermann, G.Kaestener, Physica C, 192, 207 (1992). http://dx.doi.org/10.1016/0921-4534(92)90762-2

25. A.V.Bondarenko, V.A.Shklovskij, R.V.Vovk et al., Low Temp. Phys., 23, 962 (1997). http://dx.doi.org/10.1063/1.593511

26. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., Modern Phys. Lett. B (MPLB), 25, 2131 (2011). http://dx.doi.org/10.1142/S0217984911027327

27. R.V.Vovk, M.A.Obolenskii, A.V.Bondarenko et al., Acta Phys. Polonica A, 111, 123 (2007). http://dx.doi.org/10.12693/APhysPolA.111.123

28. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Mater. Sci: Mater. Electron., 18, 811 (2007). http://dx.doi.org/10.1007/s10854-006-9086-3

29. R.V.Vovk, G.Ya.Khadzhai, O.V.Dobrovolskiy, Appl. Phys. A (2014) 117:997 -1002 DOI 10.1007/s00339-014-8670-2, http://dx.doi.org/10.1007/s00339-014-8670-2

30. L.Soderholm et al., Nature, 328, 604 (1987). http://dx.doi.org/10.1038/328604a0

31. A.Kebede et al., Phys. Rev. B, 40, 4453 (1991). http://dx.doi.org/10.1103/PhysRevB.40.4453

32. W.L.McMillan, Phys. Rev., 167, 331 (1968). http://dx.doi.org/10.1103/PhysRev.167.331

33. M.A.Obolenskiy, D.D.Balla, A.A.Zavgorodniy et al., Acta Phys. Polonica A, 122, 1111 (2012). http://dx.doi.org/10.12693/APhysPolA.122.1111

34. S.R.Evan, V.K.Ratti, B.L.Gyorffy, J. Phys. F, 3, 199 (1973). http://dx.doi.org/10.1088/0305-4608/3/10/008

35. H.Khosroabadi, M.R.Mohammadi Zaden, M.Akhavan, Physica C, 370, 85 (2002). http://dx.doi.org/10.1016/S0921-4534(01)00920-0

36. S.R.Evan, V.K.Ratti, B.L.Gyorffy, J. Phys. F, 3, 199 (1973). http://dx.doi.org/10.1088/0305-4608/3/10/008

37. V.M.Gvozdicov, Physica C, 235-240, 2127 (1994).

38. A.Perali, G.Varelogiannis, Phys. Rev. B, 61, 3672 (2000). http://dx.doi.org/10.1103/PhysRevB.61.3672

39. U.Welp, M.Grimsditch, S.Flesher et al., Phys. Rev. Lett., 69, 2130 (1992). http://dx.doi.org/10.1103/PhysRevLett.69.2130

40. U.Schwingensclogl, C.Schuster, Appl. Phys. Lett., 100, 253111 (2012). http://dx.doi.org/10.1063/1.4729892

41. R.V.Vovk, Z.F.Nazyrov, M.A.Obolenskii et al., Philosoph. Mag., 91, 2291 (2011). http://dx.doi.org/10.1080/14786435.2011.552893

42. J.L.Tallon, C.Berbhard, H.Shaked et al., Phys. Rev. B, 51, 12911 (1995). http://dx.doi.org/10.1103/PhysRevB.51.12911

43. G.D.Chryssikos, E.I.Kamitsos, J.A.Kapoutsis et al., Physica C, 254, 44 (1995). http://dx.doi.org/10.1016/0921-4534(95)00553-6

44. R.V.Vovk, Z.F.Nazyrov, I.L Goulatis et al., Modern Phys. Lett. B (MPLB), 27, 1350029 (2013). http://dx.doi.org/10.1142/S0217984913500292

45. E.Babaev, H.Kleinert, Phys. Rev. B, 59, 12083 (1999) http://dx.doi.org/10.1103/PhysRevB.59.12083

46. R.V.Vovk, M.A.Obolenskiy, A.A.Zavgorodniy et al., Physica B, 404, 3516 (2009). http://dx.doi.org/10.1016/j.physb.2009.05.047

47. R.V.Vovk, A.A.Zavgorodniy, M.A.Obolenskii et al., Modern Physics Letters B (MPLB), 24, 2295 (2010). http://dx.doi.org/10.1142/S0217984910024675

48. W.E.Lawrence, S.Doniach, Proc. 12th Intern. Conf. Low Temperature Physics, Kyoto, Japan, 1970, edited by E. Kanda, Keigaku, Tokyo (1970), p.361.

49. L.G.Aslamazov, A.I.Larkin, Fiz.Tverd.Tela 10, 1104 (1968)

50. T.A.Friedman, J.P.Rice, J.Giapintzakis, D.M.Ginzberg, Phys. Rev. B, 39, 4258 (1989). http://dx.doi.org/10.1103/PhysRevB.39.4258

51. R.V.Vovk, M.A.Obolenskii, Z.F.Nazyrov, J. Mater Sci.:Mater. Electron., 23, 1255 (2012). http://dx.doi.org/10.1007/s10854-011-0582-8

52. D.H.S.Smith, R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 72, 054506 (2005). http://dx.doi.org/10.1103/PhysRevB.72.054506

53. R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 69, 144524 (2004). http://dx.doi.org/10.1103/PhysRevB.69.144524

54. D.H.S.Smith, R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, New J. Phys., 8, 128 (2006). http://dx.doi.org/10.1088/1367-2630/8/8/128

55. R.V.Vovk, N.R.Vovk, A.V.Samoilov et al., Solid State Commun., 170, 6 (2013). http://dx.doi.org/10.1016/j.ssc.2013.07.011

Current number: