Funct. Mater. 2015; 22 (1): 51-56.

http://dx.doi.org/10.15407/fm22.01.051

The role of interstitial (crowdion) mass-transfer for crack high-temperature healing under uniaxial loading

M.A.Volosyuk1, A.V.Volosyuk1, N.Ya. Rokhmanov2

1Kharkiv National Automobile and Highway University, 25 Petrovskogo Str., 61002 Kharkiv, Ukraine2 V. Dokuchaev Kharkiv National Agrarian University, p/o Communist, 62483 Kharkiv, Ukraine

Abstract: 

Crack healing was experimentally studied in the samples of pure copper at the temperature T = 873 K (≈0.65 Tm) under conditions of uniaxial loading perpendicular to the crack bedding plane. Analysis of experimental results using the kinetic equation of the crack healing by the dislocation-diffusion mechanism has shown that under such conditions the healing process is controlled by diffusion dissolution of generated dislocation prismatic loops due both to their vacancy ″evaporation″ caused by the loop curvature and to absorption of interstitial atoms generated in the cross-points of dislocation lines. Under conditions of the described experiments, both possibilities have been shown to realize equally that substantially accelerates the crack healing process. The migration of interstitial atoms in crowdion configuration has been proved quite real.

Keywords: 
crack healing, uniaxial loading, dislocation-diffusion mechanism, interstitial atom, crowdion.
References: 

1. Scintillation Materials: Preparation, Properties, Applications. A Book of Articles ed. by B.Grinev, Institute for Single-Crystals, Kharkov (2007) [in Russian].

2. V.V.Skorokhod, S.M.Solonin, Physical and Metallurgical Bases of Powder Sintering, Metallurgy, Moscow (1984) [in Russian].

3. A.V.Lyushinskiy, Diffusion Welding of Different Materials, Akademia, Moscow (2006) [in Russian].

4. V.I.Makhnenko, V.V.Kvasnitskiy, Automat. Welding, 8, 11 (2009).

5. V.N.Betekhtin, A.G.Kadomtsev, FTT, 47, 801 (2005).

6. Yu.I.Boyko, T.G.Garbovitskaya, Yu.V.Malyukin et al., Bull. Kharkiv National University named by V.Karazin, 914, 60 (2010).

7. M.I.Lerner, G.G.Savelyev, N.V.Svarovskaya, A.I.Galanov, Izvestiya Tomskogo Politekhnicheskogo Universiteta, 309, 69 (2006).

8. A.M.Glezer, L.S.Metlov, FTT, 52, 1090 (2010).

9. Yu.I.Boyko, M.A.Volosyuk, Bull. Kharkiv National University named by V.N.Karazin, 1020, 42 (2012).

10. Yu.I.Boyko, M.A.Volosyuk, V.G.Kononenko, Functional Materials, 19, 245 (2012).

11. A.M.Kosevich, E.K.Saralidze, V.V.Slyozov, FTT, 6, 3383 (1964).

12. J.Fridel, Dislocations, Pergamon Press, Oxford-London-Edinburgh-New York-Paris-Frankfurt (1964).

13. A.Damask, J.Deans, Point Defects in Metals, Mir, Moscow (1966) [in Russian].

14. B.S.Bokstein, S.Z.Bokstein, A.A.Zhukhovitskiy, Thermodynamics and Kinetics of Diffusion in Solids, Metallurgiya, Moscow (1974) [in Russian].

15. V.D.Natsik, S.N.Smirnov, E.I.Nazarenko, FNT, 27, 1295 (2001).

16. V.D.Natsik, E.I.Nazarenko, FNT, 26, 283 (2000).

17. J.Hirth, J.Lothe, Theory of Dislocations, McGraw-Hill, New York (1968).

18. Yu.I.Golovin, A.I.Tyurin, FTT, 42, 1818 (2000).

19. Yu.I.Boyko, M.A.Volosyuk, V.G.Kononenko, Functional Materials, 19, 289 (2012).

20. M.A.Volosyuk, Problems of Atomic Scie. Technol., 4, 55 (2014).

21. N.H.March, D.I.Pushkarov, J. Phys. Chem. Solids, 57, 139 (1996). http://dx.doi.org/10.1016/0022-3697(95)00198-0

22. P.M.Derlet, D.Nguyen-Manh, S.L.Dudarev, Phys.Rev. B: Condens. Matter and Material. Phys., 76, 054107 (2007). http://dx.doi.org/10.1103/PhysRevB.76.054107

23. A.M.Iskandarov, N.N.Medvedev, P.V.Zakharov, S.V.Dmitriev, Comput. Materi. Science, 47, 429 (2009). http://dx.doi.org/10.1016/j.commatsci.2009.09.004

Current number: