Funct. Mater. 2024; 31 (3): 327-335.

doi:https://doi.org/10.15407/fm31.03.327

Structural peculiarities and mechanical characteristics of KDP-family single crystals

V.N. Baumer, Е.F. Dolzhenkova, I.М. Pritula, А.N. Iurchenko, E.I. Kostenyukova

Institute for Single Crystals, SSI "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

Investigated are mechanical characteristics of alkaline dihydrogen phosphate single crystals KH2PO4 and LiH2PO4 with different cation sizes. There are established those features of the internal structure that define the character of damage in the crystals under the mechanical stresses. It is shown that the mechanical strength of the studied crystals depends, first of all, on the number and direction of the hydrogen bonds in the crystal lattice. The longer hydrogen bonds (~2.684 Å) in alkaline dihydrogen phosphate with a small four-coordinated cation RLi+ = 0.68Å are weaker than the hydrogen bonds which belong to a strong type (~2.564 Å) in alkaline dihydrogen phosphate with a large eight-coordinated cation RK+ = 1.33 Å. The value of fracture toughness of LiH2PO4 single crystals is approximately 2-2.5 times lower than that of KH2PO4 single crystals. The plasticity of potassium dihydrophosphate is higher in comparison with the one of lithium dihydrophosphate. This is due to the fact that the contribution of the small Li+ cation to the formation of the framework is lower than that of the large K+ cation. The values of LiH2PO4 microhardness are 1.2-1.3 higher than the corresponding values of KH2PO4.

Keywords: 
KDP- family, crystal structure, hydrogen bonds, hardness, fracture toughness.
References: 
1. H. Yoshida, T. Jitsuno, H. Fujita et al., Appl. Phys. B., 70,195 (2000). 
https://doi.org/10.1007/s003400050032
 
2. E.A. Khazanov, A.M. Sergeev, Phys.Usp., 51, 969 (2008). 
https://doi.org/10.1070/PU2008v051n09ABEH006612
 
3. P. Colomban, Proton Conductors: Solids, Membranes and Gels-Materials and Devices. Cambridge University Press, Cambridge (1992). 
https://doi.org/10.1017/CBO9780511524806
 
4. A.I. Baranov, Crystallogr. Rep., 48, 1012 (2003). 
https://doi.org/10.1134/1.1627443
 
5. M. Catti, G. Ivaldi, Z. Krist., 146, 215 (1978). 
https://doi.org/10.1524/zkri.1978.146.16.215
 
6. Dongli Xu, Dongfeng Xue, Henryk Ratajczak, J. Mol. Struct., 740, 37 (2005). 
https://doi.org/10.1016/j.molstruc.2005.01.016
 
7. Kwang Sei Lee, In-Hwan Oh, Jin Jung Kweon, Cheol EuiLee, Mater. Chem. Phys., 136, 802 (2012). 
https://doi.org/10.1016/j.matchemphys.2012.08.001
 
8. In Hwan Oh, Kwang-Sei Lee, Martin Meven, Gernot Heger, Cheol Eui Lee, J. Phys. Soc. Jap., 79, 
https://doi.org/10.1143/JPSJ.79.074606
 
9. A.N. Iurchenko, A.P.Voronov, A.D. Roshal et al., Func. Mater., 24, 226 (2017). D
https://doi.org/10.15407/fm24.02.226
 
10. T. Fang, J. C. Lambropoulos, J. Am. Ceram. Soc., 85, 175 (2002). 
https://doi.org/10.1111/j.1151-2916.2002.tb00062.x
 
11. A. V. Kosinova, M. I. Kolybaeva, O. N. Bezkrovnaya et al., Cryst. Res. Technol., 49, 965 (2014). 
https://doi.org/10.1002/crat.201400285
 
12. Anton Iurchenko, Jarosław Borc, Keshra Sangwal, Alexei Voronov, Mater. Chem. Phys., 170, 276 (2016). 
https://doi.org/10.1016/j.matchemphys.2015.12.052
 
13. E.F. Dolzhenkova, E.I. Kostenyukova, O.N. Bezkrovnaya, I.M. Pritula, J. Cryst. Growth, 478, 111 
https://doi.org/10.1016/j.jcrysgro.2017.08.010
 
14. A.P. Voronov, G.N. Babenko, V.M. Puzikov, A.N. Iurchenko, J. Cryst. Growth, 374, 49 (2013). 
https://doi.org/10.1016/j.jcrysgro.2013.04.009
 
15. A.N. Iurchenko, A.P. Voronov, G.N. Babenko, M.A. Stumbra, V.M. Puzikov, Funct. Mater., 21, 324 (2014).
https://doi.org/10.15407/fm21.03.324
 
16. G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc., 64, 533 (1981). 
https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
 
17. L.V. Atroschenko, Phys. Chem. Mater. Treat., 6, 48 (1987).
 
18. Rick Ubic, Crystallography and Crystal Chemistry, Springer Nature Switzerland AG, (2024), 442 p. https://doi.org/10.1007/978-3-031-49752-0
https://doi.org/10.1007/978-3-031-49752-0
 
19. D. Xue, S. Zhang, Chem. Phys. Lett., 301, 449 (1999). doi:10.1016/S0009-2614(99)00055-X
https://doi.org/10.1016/S0009-2614(99)00055-X
 
20. A. Novak, Structure and bonding, , 177 (1974).
 
21. Kwang -Sei Lee, Jae -Hyeon Ko, Joonhee Moon, Sookyoung Lee, Sol. State Commun., 145, 487 (
https://doi.org/10.1016/j.ssc.2007.12.011
 
22. In Hwan Oh, Kwang-Sei Lee, Martin Meven, Gernot Heger Cheol Eui Lee, J. Phys. Soc. Jap., 79, 
https://doi.org/10.1143/JPSJ.79.074606
 

Current number: