Funct. Mater. 2024; 31 (3): 341-345.

doi:https://doi.org/10.15407/fm31.03.341

The influence of hydrostatic pressure up to 10 kbar on the electrical resistance and critical temperature of single crystals Y0.66Pr0.34Ba2Cu3O7-δ

V.Ju.Gres, G.Ya. Khadzhaj, A.O.Komisarov, O.Yu.Vragov, V.V.Sainchin, V.O.Kovrigin, R.V.Vovk

Kharkiv National University by V.N.Karazin, 61022, Svobody sq.4, Kharkiv, Ukraine

Abstract: 

The effect of high hydrostatic pressure up to 10 kbar on the electrical resistance in the basic ab-plane of praseodymium-doped (x ≈ 0.34) single crystals Y1-xPrxBa2Cu3O7-δ was investigated in the work. It was found that, in contrast to samples with a praseodymium content of x ≈ 0.05, the application of high pressure leads to a multiple increase in the value of the baric derivative dTc/dP. It was established that within the limits of experimentally achieved pressures, there was no change in the sign of baric derivatives dTc/dP with increasing pressure, which was observed on polycrystalline samples with close values of praseodymium concentration. Possible mechanisms of influence of high pressure on Tc are discussed, taking into account peculiarities in the electronic spectrum of carriers.

Keywords: 
YВaCuO single crystals, praseodymium doping, hydrostatic pressure, phase separation, baric derivatives.
References: 
1. M.A. Obolenskii, A.V. Bondarenko, R.V. Vovk, A.A. Prodan, Low Temp. Phys., 23 (11), 882 (1997).
https://doi.org/10.1063/1.593496
 
2. R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy et al., Physica C, 469, 203 (2009).
https://doi.org/10.1016/j.physc.2009.01.011
 
3. A. Solovjov, M. Tkachenko, R. Vovk et al., Physica C, 501, 24 (2014).
https://doi.org/10.1016/j.physc.2014.03.004
 
4. R.V. Vovk, I.L. Goulatis, A. Chroneos, J. Mater. Sci.: Mater. Electron., 24, 5127 (2013)
https://doi.org/10.1007/s10854-013-1534-2
 
5. R.V. Vovk, N.R. Vovk, G.Y. Khadzhai et al., J. Mater. Sci.: Mater. Electron., 25 5226 (2014).
https://doi.org/10.1007/s10854-014-2292-5
 
6. R.V. Vovk, Z.F. Nazyrov, M.A. Obolenskii et al., J.Alloys Compd., 509, 4553 (2011).
https://doi.org/10.1016/j.jallcom.2011.01.102
 
7. A. Chroneos, I.L. Goulatis, R.V. Vovk, Acta Chim.Slov., 54, 179 (2007).
 
8. R.V. Vovk, Z.F. Nazyrov, I.L. Goulatis et al., Mod. Phys. Lett. B, 27, 1350029 (2013).
https://doi.org/10.1142/S0217984913500292
 
9. G.Ya. Khadzhai, V.Yu. Gres, Junyi Du et al., Funct.Mater., 30, 4, 463 (2023).
https://doi.org/10.15407/fm30.04.463
10. G.Ya. Khadzhaj, A.V. Matsepulin, A. Chroneos et al., Solid State Commun., 327 114205 (2021).
https://doi.org/10.1016/j.ssc.2021.114205
 
11. M. Akhavan, Physica B, 321, 265 (2002)
https://doi.org/10.1016/S0921-4526(02)00860-8
 
12. R.V. Vovk, A.L. Solovyov, Low Temp. Phys., 44, 81 (2018)
https://doi.org/10.1063/1.5020905
 
13. R.V. Vovk, N.R. Vovk, O.V. Shekhovtsov et al., Supercond. Sci. Technol. 26, 085017 (2013).
https://doi.org/10.1088/0953-2048/26/8/085017
 
14. Jinhua Ye, Zhigang Zou, Akiyuki Matsushita et al., Phys. Rev. B, 58, R619(R) (1998).
 
15. L. Soderholm, K. Zhang, D.G. Hinks et al., Nature, 328, 604 (1987).
https://doi.org/10.1038/328604a0
 
16. A. Kebede, C.S. Jee, J. Schwegler et al., Phys. Rev. B 40, 4453 (1989).
 
17. M.R. Mohammadizadeh and M. Akhavan, Physica B 321, 301 (2002).
https://doi.org/10.1016/S0921-4526(02)00866-9
 
18. J.J. Neumeier, M.B. Maple, Physica C 156, 574 (1988).
https://doi.org/10.1016/0921-4534(88)90024-X
 
19. S.S. Weng, I.P. Hong, C.F. Chang et al., Phys. Rev. B 59, 11205 (1999).
 
20. G.Ya. Khadzhai, V.V. Sclyar, R.V. Vovk et al., Low Temp. Phys., 40, 699 (2014).
https://doi.org/10.1063/1.4894321
 
21. A.L. Solovjov, L.V. Omelchenko, E.V. Petrenko et al., Sci.Rep. 9, 20424 (2019).
https://doi.org/10.1038/s41598-019-45286-w
 
22. G. Khadzhai,A. Matsepulin,R. Vovk, Low Temp. Phys.47, 166 (2021)
 
23. G.Ya. Khadzhai, A. Chroneos, Ι.L. Goulatis et al., Low Temp.Phys., 203, 430 (2021)
https://doi.org/10.1007/s10909-021-02590-y
 
24. R.V. Vovk, N.R. Vovk, G.Ya. Khadzhai et al., Physica B, 422, 33 (2013).
https://doi.org/10.1016/j.physb.2013.04.032
 
25. R.V. Vovk, Z.F. Nazyrov, M.A. Obolenskii et al., Philosophical Magazine, 91, 2291 (2011)
https://doi.org/10.1080/14786435.2011.552893
 
26. D.D. Balla, A.V. Bondarenko, R.V. Vovk et al., Low Temp. Phys. 23, 777 (1997)
https://doi.org/10.1063/1.593445
 
27. R.V. Vovk, G.Ya. Khadzhai, Z.F. Nazyrov et al., Physica B 407, 4470 (2012).
https://doi.org/10.1016/j.physb.2012.07.049
 
28. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al J. Alloys and Compd. 453, 69 (2008).
https://doi.org/10.1016/j.jallcom.2006.11.169
 
29. W.L. McMillan, Phys. Rev. 167, 331 (198)
https://doi.org/10.1103/PhysRev.167.331
 
30. S.V. Vonsovskiy, Y.A. Izyumov, E.Z. Kurmaev, Superconductivity of Trancient Metals (Springer, Berlin, 2011).
 
31. U. Schwingenschlögl, C. Schuster, Appl. Phys. Lett., 100, 253111 (2012)
https://doi.org/10.1063/1.4729892
 
32. R.V. Vovk, C.D.H. Williams, A.F.G. Wyatt, Phys. Rev. B 68, 134508 (2003).
https://doi.org/10.1103/PhysRevB.68.134508
 
33. A.L. Solovjov, L.V. Omelchenko, R.V. Vovk et al., Curr.Appl.Phys. 16, 931 (2016).
https://doi.org/10.1016/j.cap.2016.05.014
 
34. R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy et al J. Alloys Compd. 485, 121 (2009).
 
35. A. Chroneos, G.Y. Khadzhai, I.L. Goulatis et al., J. Mater. Sci.: Mater. Electron., 33, 9875 (2022).
https://doi.org/10.1007/s10854-022-07977-5
 
36. Yu.V.Litvinov, G.Ya.Khadzhai, A.V.Samoilov et al., Funct.Mater., 26, 3, 462 (2019).
https://doi.org/10.15407/fm26.03.462
37. N.A. Azarenkov, V.N. Voevodin, R.V. Vovk et al., Funct.Mater., 25, 2, 234 (2018).
https://doi.org/10.15407/fm25.02.234

 

Current number: