Funct. Mater. 2024; 31 (3): 387-390.

doi:https://doi.org/10.15407/fm31.03.387

The influence of a rapidly-quenched filler on the wear resistance of ultrahigh molecular weight polyethylene

V.F. Bashev1, А.-М.V. Tomina1, К.А. Mykyta1, Т.V. Kalinina1, S.І. Riabtsev2, О.І. Kushnerov2

1Dniprovsk State Technical University, Kamyanske
2Oles Honchar Dnipro National University, Dnipro

Abstract: 

The paper investigates the influence of the content of Al-Co alloys quenched from the liquid state on the abrasive wear index of ultrahigh molecular weight polyethylene with rigidly attached abrasive particles. The studies have shown that: 1) quenching from the liquid state leads to the formation of highly supersaturated single-phase substitution solid solutions of Al-Co based on the FCC lattice of aluminum; 2) the introduction of 5–30 mass% of quenched aluminum alloy into ultrahigh molecular weight polyethylene reduces the rate of abrasive wear by ~ 50%. This result is due to the high microhardness, dislocation density, and microstresses in rapidly-quenched
Al-Co alloys.

Keywords: 
ultrahigh molecular weight polyethylene, supersaturated solid solution, lattice constant, microhardness, microstress, dislocation density, index of abrasive wear, abrasive particles.
References: 
1. M. Sufyan, M. Hussain, H. Ahmad, N. Abbas, J. Ashraf, N. Zahra, Biomedical Physics & Engineering Express, 5 (2019).
https://doi.org/10.1088/2057-1976/ab0e94
 
2. A.I. Burya, O.A Naberezhnaya, Cui Hong, Feng Xiao Song. J. Machines. Technologies. Materials, 10, 6 (2016).
 
3. Ye.A. Yeriomina, Development, research of properties and application of metal polymers on the basis of heat-resistant aromatic polyamide of phenylone: dis. for the degree of cand. tech. science (2017).
 
4. L.N Yashchenko, L.O. Vorontsova, T.T. Alekseeva, T.V. Tsebrienko, L.P. Steblenko, A.M. Kuryliuk, O.O. Brovko, Nanosistemi, Nanomateriali, Nanotehnologii, 17, 4 (2019).
 
5. O. Burya, Ye. Yeriomina, O. Lysenko, A. Konchits, A. Morozov, Polymer composites based on thermoplastic binders, Srednyak T. K. Press (2019).
 
6. Patent 120871 Ukraine, MPK (2006) C08L 77/00.
 
7. Patent 126282 Ukraine, MPK (2006) C08L 77/00.
 
8. Patent 125857 Ukraine, MPK (2006) C08L 77/00.
 
9. Patent 116925 Ukraine, MPK (2006) C08L 77/00.
 
10. A.-M.V. Tomina, O.V. Yeromenko, J. Functional Materials, 30, 3 (2023).
  https://doi.org/10.15407/fm30.03.403
 
11. T.B. Massalski. Binary Alloy Phase Diagrams, (1986).
 
12. H. Jones, Materials Science and Engineering, A.413 (4) (2005).
https://doi.org/10.1016/j.msea.2005.08.190
 
13. S.I. Mudryi, Y.O. Kulik, A.S. Yakymovych, X-ray structural analysis in materials science. teaching method manual. LNU named after I. Frank., Lviv (2017).

Current number: