Funct. Mater. 2024; 31 (3): 405-412.
Synthesis, spectral-fluorescence properties and TD-DFT calculations of 4-cyanotryptophan and its derivatives
1 Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine
2 State Scientific Institution ′′Institute for Single Crystals′′, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61072, Ukraine
3 Enamine Ltd., 67 Winston Churchill St., Kyiv 02660, Ukraine
Tryptophan-based fluorescent amino acids are promising alternatives to native tryptophan (Trp) for biological fluorescence studies. This work reports the synthesis and structure characterization of 4-cyanotryptophan (4-CN-Trp) based on the modified Mannich reaction. The optical spectra of 4-CN-Trp measured in solvents of different natures revealed the essential red-shifted absorption and emission in aqueous solutions compared to unsubstituted Trp. Moreover, the high fluorescence quantum yield of 4-CN-Trp makes it a promising replacement for native Trp for the study of folding and denaturation of proteins containing several Trp residues. In addition, the TD-DFT calculations were utilized for computer-aided design of dicyano-substituted Trp, suggesting that 4,6- and 4,7-diCN-Trp are promising for protein studies due to their red-shifted fluorescence.
1. A. Kyrychenko, A. S. Ladokhin. Chem. Record 4, e202300232 (2024). https://doi.org/10.1002/tcr.202300232 |
||||
2. A. B. T. Ghisaidoobe, S. J. Chung. Int. J. Mol. Sci. 15, 22518-22538 (2014). https://doi.org/10.3390/ijms151222518 |
||||
3. A. Kyrychenko, J. A. Freites, J. He, D.J. Tobias, W.C. Wimley, A.S. Ladokhin. Biophys. J. 106, 610-620 (2014). https://doi.org/10.1016/j.bpj.2013.12.032 |
||||
4. Z. Cheng, E. Kuru, A. Sachdeva, M. Vendrell. Nat. Rev. Chem. 4, 275-290 (2020). https://doi.org/10.1038/s41570-020-0186-z |
||||
5. A. Kyrychenko. Methods Appl. Fluoresc. 3, 042003/1-19 (2015). https://doi.org/10.1088/2050-6120/3/4/042003. https://doi.org/10.1088/2050-6120/3/4/042003 |
||||
6. A. Acharyya, W. Zhang, F. Gai. J. Phys. Chem. B 125, 5458-5465 (2021). https://doi.org/ 10.1021/acs.jpcb.1c02321. https://doi.org/10.1021/acs.jpcb.1c02321 |
||||
7. M. E. Kieffer, L. M. Repka, S. E. Reisman. J. Am. Chem. Soc. 134, 5131-5137 (2012). https://doi.org/10.1021/ja209390d. https://doi.org/10.1021/ja209390d |
||||
8. R. Micikas, A. Acharyya, F. Gai, A. B. Smith, III. Org. Lett. 23, 1247-1250 (2021). https://doi.org/10.1021/acs.orglett.0c04055 |
||||
9. P. Talukder, S. Chen, B. Roy, P. Yakovchuk, M. M. Spiering, et all, Biochem. 54, 7457-7469 (2015). https://doi.org/10.1021/acs.biochem.5b01085 |
||||
10. B. N. Markiewicz, D. Mukherjee, T. Troxler, F. Gai. J. Phys. Chem. B 120, 936-944 (2016). https://doi.org/10.1021/acs.jpcb.5b12233 |
||||
11. T. Haldar, S. Chatterjee, M. N. Alam, P. Maity, S. Bagchi. J. Phys. Chem. B 126, 10732-10740 (2022). https://doi.org/10.1021/acs.jpcb.2c05848 |
||||
12. A. Acharyya, I. A. Ahmed, F. Gai. 4-cyanoindole-based fluorophores for biological spectroscopy and microscopy. in Methods in Enzymology, Chenoweth, D. M., Ed. Academic Press: 2020; Vol. 639, pp 191-215. https://doi.org/10.1016/bs.mie.2020.04.014 |
||||
13. I. A. Ahmed, J. M. Rodgers, C. Eng, T. Troxler, F. Gai. Phys. Chem. Chem. Phys. 21, 12843-12849 (2019). https://doi.org/10.1039/C9CP02126D |
||||
14. M. R. Hilaire, I. A. Ahmed, C.-W. Lin, H. Jo, W. F. DeGrado, F. Gai. Proc Natl Acad Sci USA 114, 6005-6009 (2017). https://doi.org/10.1073/pnas.1705586114 |
||||
15. K. Zhang, I. A. Ahmed, H. T. Kratochvil, W. F. DeGrado, F. Gai, H. Jo. Chem. Commun. 55, 5095-5098 (2019). https://doi.org/10.1039/C9CC01152H |
||||
16. A. D. Becke. J. Chem. Phys. 98, 5648-5652 (1993). https://doi.org/10.1063/1.464913 |
||||
17. T. H. Dunning. J. Chem. Phys. 90, 1007-1023 (1989). https://doi.org/10.1063/1.456153 |
||||
18. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, et. al. Gaussian 16 rev. C.01, Wallingford, CT, 2016. | ||||
19. C. R. Hurt, R. Lin, H. Rapoport. J. Org. Chem. 64, 225-233 (1999). https://doi.org/10.1021/jo981723s |
||||
20. Y. Nosenko, A. Kyrychenko, R. P. Thummel, J. Waluk, B. Brutschy, J. Herbich. Phys. Chem. Chem. Phys. 9, 3276-3285 (2007). https://doi.org/10.1039/b703908e |
||||
21. Y. Nosenko, M. Kunitski, C. Riehn, R. P. Thummel, A. Kyrychenko, J. Herbich, J. Waluk, B. Brutschy. J. Phys. Chem. A 112, 1150-1156 (2008). https://doi.org/10.1021/jp076839j |
||||
22. H. Liu, H. Zhang, B. Jin. SpectroChim Acta A 106, 54-59 (2013). https://doi.org/10.1016/j.saa.2012.12.065 |
||||
23. G. Díaz Mirón, M. C. González Lebrero. J. Phys. Chem. A 124, 9503-9512 (2020). https://doi.org/10.1021/acs.jpca.0c06631 |
||||
24. S. Abou-Hatab, S. Matsika. J. Phys. Chem. B 123, 7424-7435 (2019). https://doi.org/10.1021/acs.jpcb.9b05961 |
||||
25. D. Brisker-Klaiman, A. Dreuw. ChemPhysChem 16, 1695-1702 (2015). https://doi.org/10.1002/cphc.201500073 |
||||
26. L. S. Slater, P. R. Callis. J. Phys. Chem. 99, 8572-8581 (1995). https://doi.org/10.1021/j100021a020 |