Funct. Mater. 2024; 31 (3): 442-449.

doi:https://doi.org/10.15407/fm31.03.442

Preparation of a novel hyperbranched polymer and its scale inhibition performance

Wei Xi1, Shu-sheng Zhou2

1 Jingzhou University, Jingzhou 434020, Hubei, China
2 Jingzhou Jiahua Technology Co., Ltd., Jingzhou 434000, Hubei, China

Abstract: 

Calcium scale is easily deposited on pipeline surfaces under the influence of pressure and temperature, which leads to a decrease in oil and gas production. To effectively prevent scale formation, a new hyperbranched polymer based on Michael addition and amidation reactions has been developed, which is phosphorus-free and a highly effective scale inhibitor. It consists of ethylenediamine (EDA), methyl acrylate (MA) and succinic anhydride (SA) as raw materials, and its scale inhibition performance and mechanism were studied. According to the experimental results, at the concentration of 400 mg/L, the inhibition rates of HPA-COOH for CaCO3 and CaSO4 scales were 97.3% and 91.2%, respectively, indicating good scale inhibition performance. The addition of scale inhibitor (HPA-COOH) led to a significant decrease in the Z-potential and transmittance, which contributed to the formation of small and stable calcium scales in the solution and increased the dispersing efficiency of the scale inhibitor. In addition, the growth of CaCO3 scale crystals was inhibited by HPA-COOH which crystallizes in a large and unstable form and results in a change in the crystal form of CaCO3 scale.

Keywords: 
Hyperbranched polymer; Scale inhibition; CaCO<sub>3</sub> scale crystal; Michael addition reaction; Zeta potential value
References: 
1. S.P. Gopi, V.K. Subramanian, K. Palanisamy, Ind. Eng. Chem. Res., 54, 3618, 2015. 
https://doi.org/10.1021/ie5034039
 
2. A. Valiakhmetova, K.S. Sorbie, L.S. Boak, S.S. Shaw, SPE Prod. Oper, 32, 343, 2017. 
https://doi.org/10.2118/178977-PA
 
3. M.F. Mady, A.T. Abdelaal, A. Moschona, K.D. Demadis, Energy Fuels, 37, 4365, 2023. 
https://doi.org/10.1021/acs.energyfuels.2c04277
 
4. M.F. Mady, S. Abdel-Azeim, M.A. Kelland, Ind. Eng. Chem. Res, 60, 12175, 2021. 
https://doi.org/10.1021/acs.iecr.1c02441
 
5. M.F. Mady, M.A. Kelland, Energy Fuels, 31, 4603, 2017. 
https://doi.org/10.1021/acs.energyfuels.7b00708
 
6. R.W.P. Ortiz, J. Oliveira, G..V. Vaz, N. Passos, SPE J., 29, 1, 2023. 
https://doi.org/10.2118/218011-PA
 
7. M.S.H. Bader, J. Petrol. Sci. Eng., 55, 93, 2007. 
https://doi.org/10.1016/j.petrol.2006.04.010
 
8. S. Elkatatny, M. Mahmoud, B. Bageri, J. Pet. Explor. Prod. Technol. 2018, 8, 165, 2018. 
https://doi.org/10.1007/s13202-017-0319-1
 
9. F. Jones, P. Jones, M.I. Ogden, W.R. Richmond, A.L. Rohl, M. Saunders, J. Colloid Interf. Sci.,316, 553, 2007. 
https://doi.org/10.1016/j.jcis.2007.09.005
 
10. H.J. Bemelaar, A.H. Nasr-EI-Din, A.C.D. Wolf, N.J. LePage, SPE J., 16, 559, 2011. 
https://doi.org/10.2118/127923-PA
 
11. M.F. Mady, A. Rehman, M.A. Kelland, Ind. Eng. Chem. Res., 60, 8331, 2021 
https://doi.org/10.1021/acs.iecr.1c01473
 
12. H. Huang, Q. Yao, B. Liu, N. Shan, H. Chen, New J. Chem. 2017, 41, 12205, 2017. 
https://doi.org/10.1039/C7NJ02201H
 
13. M. Yan, Q. Tan, Z. Liu, H. Li, Y. Zheng, L. Zhang, Z. Liu, ACS Omega 2020, 5, 15487, 2020. 
https://doi.org/10.1021/acsomega.0c01620
 
14. M.K.Jensen, M.A. Kelland, J. Petrol. Sci. Eng., 94, 66, 2012 
https://doi.org/10.1016/j.petrol.2012.06.025
 
15. Y. Wang, H. Chen, Z. Zhang, H. Huang, B. Liu, K. Ding, J. Appl. Polym. Sci. 136, 48041, 2019. 
https://doi.org/10.1002/app.48041
 
16. M.F. Mady, P. Charoensumran, H. Ajiro, M.A. Kelland, Energy Fuels, 32, 6746, 2018. 
https://doi.org/10.1021/acs.energyfuels.8b01168
 
17. K. Popov, M. Oshchepkov, S. Kamagurov, S. Tkachenko, J. Dikareva, G.. Rudakova, J. Appl. Polym. Sci., 134, 45, 2017. 
 
18. H. Huang, Q. Yao, Q. Jiao, B. Liu, H. Chen, J. Saudi Chem. Soc., 23, 61, 2019 
https://doi.org/10.1016/j.jscs.2018.04.003

Current number: