Funct. Mater. 2024; 31 (4): 487-494.

doi:https://doi.org/10.15407/fm31.04.487

Structure refinement, ferroelectric domains and mechanical properties of Czochralski-grown Ca9La(VO4)7 and Ca10Li(VO4)7 single crystals

V.A. Bedarev 1, M.B, Kosmyna 2, P.V, Mateychenko 2, D.N. Merenkov 1, W, Paszkowicz 3 , S. N. Poperezhai 1, A. Fitch 4, P. Romanowski 3, A, N, Shekhovtsov 2

1B. Verkin Institute for Low Temperature Physics and Engineering, NAS of Ukraine, Nauky Ave. 47, 61103, Kharkov, Ukraine
2 Institute for Single Crystals, NAS of Ukraine, Nauky Ave. 60, 61072, Kharkov, Ukraine.
3Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
4ESRF, CS40220, 38043 Grenoble Cedex 9, France

Abstract: 

Physical properties of whitlockite-type Ca3 (VO 4 ) 2 orthovanadate can be modified by incorporation of isovalent or aliovalent cation substituents. In this paper, the features of the crystal structure of Ca9La(VO4)7 and Ca10Li(VO4)7 whitlockite-type crystals grown by the Czochralski method with substitution by aliovalent La or Li ions are studied. Refinement of the structure using the Rietveld approach allowed us to determine the unit cell parameters and site occupancy. According to the data of polarization-optical studies, the formation of a strip-like ferroelectric domain structure with spontaneous polarization parallel to the third-order axis was established in the Ca9La(VO4)7 single crystal. It has been established that Ca10Li(VO4)7 is an antiferroelectric at room temperature. The correlations between Vickers hardness and fracture toughness values and the degree of crystal perfection are discussed.

Keywords: 
powder diffraction, orthovanadate, whitlockite, ferroelectric domain, crystal structure.
References: 
1. A.A. Belik, V.A. Morozov, S.S. Khasanov, B.I. Lazoryak, Crystallography Reports, 42(5), 751 (1997).
 
2. A.A. Belik, V.A. Morozov., R.N. Kotov, S.S. Khasanov, B.I. Lazoryak, Crystallography Reports, 45(3), 389 (2000).
https://doi.org/10.1134/1.171204
 
3. A.A. Belik, V.A. Morozov, S.V. Grechkin, S.S. Khasanov, B.I. Lazoryak, Crystallography Reports, 45(5), 728 (2000).
https://doi.org/10.1134/1.1312910
 
4. A.A. Belik, S.V. Grechkin, L.O. Dmitrienko, V.A. Morozov, S.S. Khasanov, B.I. Lazoryak, Crystallography Reports, 45(6), 976 (2000).
 
5. W. Paszkowicz, A. Shekhovtsov, M. Kosmyna, P. Loiko, E. Vilejshikova, R. Minikayev, P. Romanowski, W. Wierzchowski, K. Wieteska, C. Paulmann, E. Bryleva, K. Belikov, A. Fitch, Nuclear Instruments and Methods in Physics Research B, 411, 100 (2017).
https://doi.org/10.1016/j.nimb.2017.07.026
 
6. H.K. Kim, M.S. Kim, S.M. Park, A.W. Sleight, J. Crystal Growth, 219(1-2) 61 (2000).
https://doi.org/10.1016/S0022-0248(00)00606-0
 
7. Z. Lin, G. Wang, L. Zhang, J. Crystal Growth, 304(1), 233 (2007).
https://doi.org/10.1016/j.jcrysgro.2007.01.039
 
8. Z. Chen, D. Wang, L. Liu, F. Yuan, Y. Huang, L. Zhang, Z. Lin, J. Alloys and Compounds, 938, 168651 (2023).
https://doi.org/10.1016/j.jallcom.2022.168651
 
9. J.S.O. Evans, J. Huang, A.W. Sleight, J. Solid State Chemistry, 157(2), 255 (2001).
https://doi.org/10.1006/jssc.2000.9045
 
10. X. Hu, X. Chen, N. Zhuang, R. Wang, J. Chen, J. Crystal Growth, 310, 5423 (2008).
https://doi.org/10.1016/j.jcrysgro.2008.09.059
 
11. L. Li, G. Wang, Y. Huang, L. Zhang, Z. Lin, G. Wang, J. Crystal Growth, 314, 331 (2011).
https://doi.org/10.1016/j.jcrysgro.2010.11.114
 
12. D. Petrova, D. Deyneko, S. Stefanovich, S. Aksenov, B. Lazoryak, Powder Diffraction, 32(3), 175 (2017).
https://doi.org/10.1017/S0885715617000744
 
13. S. Liu, C. Li, J. Jiao, Y. She, T. Zhang, D. Ju, N. Ye, Z. Hu, Y. Wu, Inorganic Chemistry Frontiers, 11(8), 2384 (2024).
https://doi.org/10.1039/D4QI00261J
 
14. M.B. Kosmyna, B.P. Nazarenko, I.O. Radchenko, A.N. Shekhovtsov, Functional Materials, 22(4), 446 (2015). http://dx.doi.org/10.15407/fm22.04.446
 
15. M.B. Kosmyna, B.P. Nazarenko, V.M. Puzikov, A.N. Shekhovtsov, W. Paszkowicz, A. Behrooz, P. Romanowski, A.S. Yasukevich, N.V. Kuleshov, M.P. Demesh, W. Wierzchowski, K. Wieteska, C. Paulmann, J. Crystal Growth, 445, 101 (2016).
https://doi.org/10.1016/j.jcrysgro.2016.04.002
 
16. R. Singh, S.J. Dhoble, J. Luminescence, 28(4), 607 (2013).
https://doi.org/10.1002/bio.2407
 
17. L. Li, X.G. Liu, H.M. Noh, J.H. Jeong, J. Solid State Chemistry, 221, 95 (2015).
https://doi.org/10.1016/j.jssc.2014.09.025
 
18. J. Zhao, C. Guo, J. Yu, R. Yu, Optics & Laser Technology, 45, 62 (2013).
https://doi.org/10.1016/j.optlastec.2012.07.032
 
19. M.V. Dobrotvorskaya, Yu.N. Gorobets, M.B. Kosmyna, P.V. Mateichenko, B.P. Nazarenko, V.M. Puzikov, A.N. Shekhovtsov, Crystallography Reports, 57(7), 959 (2012).
https://doi.org/10.1134/S1063774512070061
 
20. M.B. Kosmyna, B.P. Nazarenko, V.M. Puzikov, A.N. Shekhovtsov, Acta Physica Polonica A, 123(2), 305 (2013).
https://doi.org/10.12693/APhysPolA.124.305
 
21. L. Liu, R.J. Xie, N. Hirosaki, Y. Li, T. Takeda, C.N. Zhang, et al, J. American Ceramic Society, 93(12), 4081 (2010).
https://doi.org/10.1111/j.1551-2916.2010.03994.x
 
22. C. Zhang, C. Yao, Ceramics International, 49(8), 13000 (2023).
https://doi.org/10.1016/j.ceramint.2022.12.173
 
23. M.P. Demesh, А.S. Yasukevich, А.N. Shekhovtsov, M.B. Kosmyna, W. Paszkowicz, N.V. Kuleshov, J. Luminescence, 224, 117270 (2020).
https://doi.org/10.1016/j.jlumin.2020.117270
 
24. B.I. Lazoryak, A.A. Belik, S.Y. Stefanovich, V.A. Morozov, A.P. Malakho, O.V. Baryshnikova, I.A. Leonidov, O.N. Leonidova, Doklady Physical Chemistry, 384, 144 (2002).
https://doi.org/10.1023/A:1016063602815
 
25. V.A. Morozov, A.A. Belik, S.Y. Stefanovich, V.V. Grebenev, O.I. Lebedev, G. Van Tendeloo, B.I. Lazoryak, J. Solid State Chemistry, 165(2), 278 (2002).
https://doi.org/10.1006/jssc.2001.9521
 
26. B.I. Lazoryak, V.A. Morozov, A.A. Belik, S.Y. Stefanovich, V.V. Grebenev, I.A. Leonidov, E.B. Mitberg, S.A. Davydov, O.I. Lebedev, G. Van Tendeloo, Solid state sciences, 6(2), 185 (2004).
https://doi.org/10.1016/j.solidstatesciences.2003.12.007
 
27. M.B. Kosmyna, P.V. Mateychenko, B.P. Nazarenko, A.N. Shekhovtsov, S.M. Aksenov, D.A. Spassky, A.V. Mosunov, S.Yu. Stefanovich, J. Alloys and Compounds, 708, 285 (2017).
https://doi.org/10.1016/j.jallcom.2017.02.219
 
28. B. Lazoryak, D. Deyneko, S. Aksenov, V. Grebenev, S. Stefanovich, K. Belikov, M. Kosmyna, A. Shekhovtsov, A. Sulich, W. Paszkowicz, CrystEngComm, 20, 6310 (2018).
https://doi.org/10.1039/C8CE01252K
 
29. Z. Zhang, P. Loiko, H. Wu, X. Mateos, J.M. Serres, H.F. Lin, W.D. Chen, G. Zhang, L.Z. Zhang, F. Díaz, M. Aguiló, V. Petrov, U. Griebner, Y.C. Wang, E. Vilejshikova, K. Yumashev, Z.B. Lin, Optical Materials Express, 7(2), 484 (2017).
https://doi.org/10.1364/OME.7.000484
 
30. G. Liu, Z. Bai, F. Yuan, Y. Huang, L. Zhang, Z. Lin, J. Crystal Growth, 520, 62 (2019).
https://doi.org/10.1016/j.jcrysgro.2019.05.025
 
31. A. Pajączkowska, Acta Physica Polonica A, 124(2), 171 (2013).
 
32. W. Paszkowicz, Nuclear Instruments and Methods in Physics Research A, 551(1), 162 (2005).
https://doi.org/10.1016/j.nima.2005.07.068
 
33. A. Zięba, W. Dabrowski, A. Czermak, Proceedings of the First Polish Meeting High-Resolution X-ray Diffractometry and Topography of Conferences Notes, Szklarska Poremba, 14-17 September, 63 (1996) (In Polish).
 
34. H. Toraya, H. Hibino, K. Ohsumi, J. Synchrotron Radiation, 3(2), 75 (1996).
https://doi.org/10.1107/S0909049595015500
 
35. J.L. Hodeau, P. Bordet, M. Anne, A. Prat, A.N. Fitch, E. Dooryhee, G. Vaughan, A.K. Freund, Proceedings of SPIE′s International Symposium on Optical Science, Engineering, and Instrumentation, 3448, 353 (1998).
https://doi.org/10.1117/12.332525
 
36. A. Fitch, J. Research of National Institute of Standards and Technology, 109, 133 (2004).
https://doi.org/10.6028/jres.109.010
 
37. J. Rodríguez-Carvajal, Physica B, 192, 55 (1993).
https://doi.org/10.1016/0921-4526(93)90108-I
 
38. A.G. Evans, E.A.Charles, J. American Ceramic Society, 59(7-8), 371 (1976).
https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
 
39. N.F. Evlanova, I.I. Naumova, T.O. Chaplina, S.V. Lavrishchev, S.A. Blokhin, Physics of the Solid State, 42, 1727 (2000).
https://doi.org/10.1134/1.1309459
 
40. R. Gopal, C. Calvo, Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 137, 67 (1973).
https://doi.org/10.1524/zkri.1973.137.1.67
 
41. A.V. Teterskii, S.Y. Stefanovich, B.I. Lazoryak, D.A. Rusakov, Russian J. Inorganic Chemistry, 52, 308 (2007).
https://doi.org/10.1134/S0036023607030023
 
42. S.Yu. Stefanovich, A.A. Belik, M. Azuma, M. Takano, O.V. Baryshnikova, V.A. Morozov, B.I. Lazoryak, O.I. Lebedev, G. Van Tendeloo, Physical Review B, 70, 172103 (2004).
https://doi.org/10.1103/PhysRevB.70.172103
 
43. G. Fantozzi, G. Orange, K. Liang, .M. Gautier, J-P Duraud, P Maire, C Le Gressus, E. Gille, J. American Ceramic Society, 72(8), 1562 (1989).
https://doi.org/10.1111/j.1151-2916.1989.tb07708.x
 

 

Current number: