Funct. Mater. 2024; 31 (4): 495-500.

doi:https://doi.org/10.15407/fm31.04.495

On luminescent and scintillation properties of CsMgCl3:Eu2+ crystals

V.L. Cherginets1, V.D. Alekseev1, K.Yu. Bryleva2, T.V. Ponomarenko1, A.L. Rebrov1, T.P. Rebrova1, A.V. Sorokin1, O.V. Zelenskaya1, O.I. Yurchenko3 and V.V. Soloviev4

1Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Nauky avenue, 60, 61001, Kharkiv, Ukraine
2SSI “Institute for Single Crystals” of NAS of Ukraine, 60, Nauky ave., Kharkiv, 61072, Ukraine
3V.N. Karazin Kharkiv National University, Svobody Sq., 4, 61022, Kharkiv, Ukraine
4Poltava V.G. Korolenko National Pedagogical University, Ostrogradsky str., 2, Poltava, Ukraine

Abstract: 

The paper reports results of pure CsMgCl3 and CsMgCl3:xEu2+ (x = 0.5, 1 and 1.5 mol. %, in the charge) single crystals growth and investigations of their functional properties. The crystals were grown by Bridgman method and the entry ratio of Eu2+ into CsMgCl3 was determined as 0.021, i.e. in all the europium-activated samples the concentration of the activator was at the level of admixtures. The photoluminescence spectra of CsMgCl3:Eu2+ show that Eu enters in the crystal both as Eu2+ form (main) and Eu3+ one (trace amounts). The shape of the spectra are dependent on excitation wavelength (λex): at λex=350 nm the shape of the spectra corresponds to those of Eu2+ activated halides (the maxima in 470–490 nm range) and at λex=275 nm the shape of spectra corresponds to those of Eu3+-activated phosphors. X-ray luminescence spectra include two bands with the maxima at 460 nm proper for Eu2+- activated halides and at 545 nm which could be ascribed to the distortions of CsMgCl3 crystal lattice due to entering of the slightly isomorphic Eu2+. The X-ray luminescence decay time is estimated within 0.8–0.9 µs. CsMgCl3:Eu2+ crystals possess the light yield of ca. 150 % vs. BGO (Bi4Ge3O12) and it is impossible to determine the concentration dependence since only traces of the activator are incorporated inside CsMgCl3:Eu2+ crystals. The best energy resolution is 18 %.

Keywords: 
cesium chloride, magnesium chloride, europium bromide, entry ratio, luminescence, scintillation, light yield.
References: 

1. K. Yang, M. Zhuravleva, C.L. Melcher, Phys. Status Solidi RRL, 5(1), 43 (2011).

https://doi.org/10.1002/pssr.201004434.

2. M. Suta, P. Larsen, F. Lavoie-Cardinal, C. Wickleder, J. Lumin, 149(1), 35 (2014). https://doi.org/10.1016/j.jlumin.2013.12.040.

3. M. Zhuravleva, B. Blalock, K. Yang, M. Koschan, C. L. Melcher, J. Cryst. Growth, 352(1), 115 (2012). https://doi.org/10.1016/j.jcrysgro.2012.02.025.

4. V.L. Cherginets, A.Yu. Grippa, T.P. Rebrova, Yu.N. Datsko, T.V. Ponomarenko, N.V. Rebrova, N.N. Kosinov, O.A. Tarasenko, Yu.I. Dolzhenko, O.V. Zelenskaya, Funct. Mater., 19 (2), 187-191 (2012).

5. M. Koshimizu, N. Yahaba, R. Haruki, F. Nishikido, S. Kishimoto, K. Asai, Opt. Mater., 36, 1930 (2014). https://doi.org/10.1016/j.optmat.2014.04.004 .

6. V. L. Cherginets, N. V. Rebrova, A. Yu. Grippa, Yu. N.Datsko, T. V.Ponomarenko, V. Yu. Pedash, N. N. Kosinov, V. A. Tarasov, O.V. Zelenskaya, I.M. Zenya, A.V. Lopin, Mater. Chem.Phys., 143(3), 1296 (2014). https://doi.org/10.1016/j.matchemphys.2013.11.037 .

7. M. Zhuravleva, B. Blalock, K. Yang, M. Koschan, C.L. Melcher, J. Cryst. Growth., 352(1), 115 (2012). https://doi.org/10.1016/j.jcrysgro.2012.02.025.

8. N. V. Rebrova, A. Yu. Grippa, A. S. Pushak, T. E. Gorbacheva, V. Yu.Pedash, O. G. Viagin, V. L. Cherginets, V. A. Tarasov, V. V. Vistovskyy, A.P. Vas′kiv, S.V. Myagkota, J. Cryst.Growth, 466, 39 (2017). https://doi.org/10.1016/j.jcrysgro.2017.03.016.

9. G. Shwetha, V. Kanchana, G. Vaitheeswaran, J. Solid State Chem., 227, 110 (2015). https://doi.org/10.1016/j.jssc.2015.03.024

10. M. Suta, F. Lavoie-Cardinal, J. Olchowka, K. Wickleder, Phys. Rev. Appl., 9, 064024 (2018).

https://doi.org/10.1103/PhysRevApplied.9.064024.

11. Sysoeva E.; Tarasov, V.; Zelenskaya, O., Nucl. Instr. Meth. Phys. Res. A., 486 (1-2), 67 (2002).

https://doi.org/10.1016/S0168-9002(02)00676-9.

12. Oppermann H., Hennig C., Z. Anorg. Allg. Chem., 626, 450 (2000). DOI: 10.1002/(SICI)1521-3749(200002)626:2\<450::AID-ZAAC450\>3.0.CO;2-M.

13. Mua Z., Song E., Zhu D., Feng J., Yang Y., Displays, 43, 18 (2016). DOI: https://doi.org/10.1016/j.displa.2016.04.001.

14. http://abulafia.mt.ic.ac.uk/shannon/radius.php (Last visited July 8 2024).

15. Rebrova N.V., Cherginets V.L., Kosinov N.N., Ponomarenko T.V., Rebrova Т.P., Vjunnik I.N., Zelenskaya О.V., Funct. Mater., 16(4) 501 (2009).

16. Cherginets V., Rebrov O., Rebrova T., Ponomarenko T., Boyarintseva Ia., Zelenskaya O., Yurchenko O. Growth and investigation of functional parameters of Cs3ZnCl5-based scintillators, Abstr. XXI Int. Conf. Inorg. Chem. Ukraine 2024, 3-6.06.2024, Uzhhorod. P.84.

17. https://sciencenotes.org/list-of-electronegativity-values-of-the-elements/ (Last visited July 8 2024).

Current number: