Funct. Mater. 2024; 31 (4): 501-507.

doi:https://doi.org/10.15407/fm31.04.501

Synthesis, morphology and optical properties of the luminescent phosphate-molybdate glasses of the P2O5-MoO3-Bi2O3-K2O-EuPO4 system

K. Terebilenko1, A. Voinalovych1, V. Borysiuk1, V. Chornii1,2, V. Boyko2, Ya. Zhydachevskyy3, V. Sheludko4, S.G. Nedilko1

1Taras Shevchenko National University of Kyiv, 01601, Volodymyrska st. 60, Kyiv, Ukraine
2National University of Life and Environmental Sciences of Ukraine, 03041, Heroiv Oborony st. 15, Kyiv, Ukraine
3Institute of Physics, Polish Academy of Sciences, PL02-668, aleja Lotników 32/46, Warsaw, Poland
4Oleksandr Dovzhenko Hlukhiv National Pedagogical University, 41401, Kyivska st. 24, Hlukhiv, Ukraine.

Abstract: 

The study deals with synthesis, structure and optical properties of the phosphate glasses of the composition (1-x) *(44.37P2O5 - 8.32MoO3 -2.94Bi2O3 - 44.37K2O) - xEuPO4 (where x = 0, 0.5, 1.0, 2.0, and 5.0 mol. %). The structure, morphology, and optical properties of the glasses have been observed and analyzed with the use of the XRD, SEM, light diffuse reflection, and luminescent methods. It was found that the glasses doped with EuPO4 crystalline particles reveal intensive photoluminescence mainly caused by the 5D0->7FJ (J = 1 – 4) radiation transitions in the Eu3+ ions. Molybdenum (VI) and bismuth (III) oxides modify a vitreous network and can provide wide light absorption bands in the spectral range ~300 – 430 nm and low intensity luminescence bands in the range 300 – 525 nm, too. Based on a comparison of the spectral characteristics of the radiation of Eu3+ ions luminescence in EuPO4 crystals and manufactured glasses, it was assumed that the initial EuPO4 particles do not dissolve completely under melting and are present in the manufactured glasses as nanoparticles of small (several nanometers) size. The obtained results indicates that the glasses under study can be used for elaboration of “warm light” emitting devices.

Keywords: 
Synthesis, morphology
References: 
1. Y. Hu, Y. Ye, W. Zhang et al., J. Mater. Sci. Technol., 150, 138 (2023).
https://doi.org/10.1016/j.jmst.2022.11.055
 
2. W.C. Wang, B. Zhou, S.H. Xu et al., Prog. Mater. Sci. 101, 90 (2019).
https://doi.org/10.1016/j.pmatsci.2018.11.003
 
3. A. de Pablos-Martín, S. Rodríguez-López, M.J. Pascual, Int. J. Appl. Glass Sci.,11, 552 (2020).
https://doi.org/10.1111/ijag.15107
 
4. S. Kaewjaeng, S. Kothan, W. Chaiphaksa et al., Radiat. Phys. Chem., 160, 41 (2019).
https://doi.org/10.1016/j.radphyschem.2019.03.018
 
5. H.E. Skallevold, D. Rokaya, Z. Khurshid, M.S. Zafar, Int. J. Mol. Sci., 20, 5960. (2019).
https://doi.org/10.3390/ijms20235960
 
6. Z. Neščáková, K. Zheng, L. Liverani et al., Bioact. Mater., 4, 312 (2019).
https://doi.org/10.1016/j.bioactmat.2019.10.002
 
7. W.H. Zachariasen, J. Am. Chem. Soc. 54, 3841 (1932).
https://doi.org/10.1021/ja01349a006
 
8. C.G. Young, Proc. IEEE, 57, 1267 (1969).
https://doi.org/10.1109/PROC.1969.7231
 
9. N.G. Boetti, D. Pugliese, E. Ceci-Ginistrelli et al., Appl. Sci., 7, 1295 (2017).
https://doi.org/10.3390/app7121295
 
10. R.K. Brow, J. Non-Cryst. Solids, 263-264, 1 (2000).
https://doi.org/10.1016/S0022-3093(99)00620-1
 
11. A.A. Setlur, A.M. Srivastava, Opt. Mater., 29, 410 (2006).
https://doi.org/10.1016/j.optmat.2005.09.076
 
12. Y. Hizhnyi, S.G. Nedilko, V. Chornii et al., Solid State Phenom., 200, 114 (2013).
https://doi.org/10.4028/www.scientific.net/SSP.200.114
 
13. Y.A. Hizhnyi, S.G. Nedilko, V.P. Chornii et al., J. Alloys Compd. 614, 420 (2014).
 
14. J. Han, L. Li, M. Peng et al., Chem. Mater., 29, 8412 (2017).
https://doi.org/10.1021/acs.chemmater.7b02979
 
15. Y. Hizhnyi, V. Borysyuk, V. Chornii et al., J. Alloys Compd., 867, 159148 (2021).
https://doi.org/10.1016/j.jallcom.2021.159148
 
16. C.L. Ranganatha, H.S. Lokesha, K.R. Nagabhushana, B.S. Palakshamurthy, J. Alloys Compd., 962, 171061 (2023).
https://doi.org/10.1016/j.jallcom.2023.171061
 
17. K.V. Terebilenko, I.V. Zatovsky, N.S. Slobodyanik et al., J. Solid State Chem., 180, 3351 (2007).
https://doi.org/10.1016/j.jssc.2007.10.001
 
18. I. Milisavljevic, M.J. Pitcher, J. Li et al., Int. Mater. Rev., 68, 648 (2023).
https://doi.org/10.1080/09506608.2022.2107372
 
19. T. Komatsu, T. Honma, Int. J. Appl. Glass Sci., 4, 125 (2013).
https://doi.org/10.1111/ijag.12023
 
20. X. Liu, J. Zhou, S. Zhou et al., Prog. Mater. Sci., 97, 38 (2018).
https://doi.org/10.1016/j.pmatsci.2018.02.006
 
21. Y. Zhang, X. Li, Z. Lai et al., J. Phys. Chem. C, 123, 10021 (2019).
https://doi.org/10.1021/acs.jpcc.9b00359
 
22. T. Honma, K. Maeda, S. Nakane, K. Shinozaki, J. Ceram. Soc. Jpn., 130, 545 (2022).
https://doi.org/10.2109/jcersj2.22037
 
23. A. Shearer, M. Montazerian, B. Deng et al., Int. J. Ceram. Eng. Sci., 6, e10200 (2024).
https://doi.org/10.1002/ces2.10200
 
24. M. Shwetha, B. Eraiah, IOP Conf. Ser. Mater. Sci. Eng., 310, 012033 (2018).
https://doi.org/10.1088/1757-899X/310/1/012033
 
25. P. Kubelka, J. Opt. Soc. Am., 38, 448 (1948).
https://doi.org/10.1364/JOSA.38.000448
 
26. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B., 15, 627 (1966).
https://doi.org/10.1002/pssb.19660150224
 
27. S. Golbs, F.M. Schappacher, R. Pöttgen et al., Z. Anorg. Allg. Chem., 639, 2139 (2013).
https://doi.org/10.1002/zaac.201300285
 
28. A. Mesbah, N. Clavier, E. Elkaim et al., J. Solid State Chem., 249, 221 (2017).
https://doi.org/10.1016/j.jssc.2017.03.004
 
29. R.M. Macfarlane, R.M. Shelby, J. Lumin., 36, 179 (1987).
https://doi.org/10.1016/0022-2313(87)90194-3
 
30. T. Gavrilović, J. Periša, J. Papan et al., J. Lumin., 195, 420 (2018).
https://doi.org/10.1016/j.jlumin.2017.12.002
 
31. C.S. McCamy, Color Res. Appl., 17, 142 (1992).
https://doi.org/10.1002/col.5080170211
 
32. A.U. Trápala-Ramírez, J.L.N. Gálvez-Sandoval, A. Lira et al., J. Lumin., 215, 116621 (2019).
https://doi.org/10.1016/j.jlumin.2019.116621
 
 
 

Current number: