Funct. Mater. 2024; 31 (4): 527-537.

doi:https://doi.org/10.15407/fm31.04.527

Biogenic hydroxyapatite-based composites modified by magnetite and chitosan: long-term bioresorption and adsorption activity

A. Synytsia 1, O. Sych 1,2 , O. Bykov 1, O. Olifan 1, T. Babutina 1, O. Bydulina 1, О. Khomenko1

1Frantsevich Institute for Problems of Materials Science, NAS of Ukraine, 3 O. Pritsaka Str., Kyiv 03142, Ukraine,
2Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska Str., 29/37, 01-142 Warsaw, Poland

Abstract: 

The work is devoted to the investigation of the long-term resorption of BHA/magnetite/chitosan composites with a magnetite content of 1, 5, 25, and 50 wt.% in physiological solution for different periods of time (2, 10, 16, and 31 days) and their adsorption activity toward methylene blue. It was shown that the content of magnetite significantly affects the rate of resorption of materials, in particular at the initial stages; the highest rate of resorption is observed during the first 2 days. In the next 8-10 days, a sharp decrease in the rate of resorption of all composites is observed, followed by stabilization on the 15th day of the in vitro experiment. At the same time, the most significant weight loss of test samples occurs when added more than 5 wt. % of magnetite. The dynamics of the dissolution process is also confirmed by the presence of Ca, P and Fe in physiological solution, a change in the pH of the saline, a decrease in the size and smoothing of composite particles, and an increase in the specific surface area. The adsorption activity for methylene blue increases with increasing amounts of chitosan and magnetite in the composites up to 168 mg/g for 25% magnetite (2.5% chitosan) compared to 108 mg/g for pure BHA. The obtained results confirmed the controlled resorption and high adsorption properties of BHA/magnetite/chitosan composites, which provides prospects for their medical application.

Keywords: 
hydroxyapatite, magnetite, chitosan, composite, biomaterial, resorption, adsorption activity
References: 
1. E. Fiume, G. Magnaterra, A. Rahdar, et al., Ceram, 4, 542, (2021). 
https://doi.org/10.3390/ceramics4040039
 
2. W. Dai, S. Li, H. Jia, et al., J. Mater. Sci. Technol, 295, 207, (2024). 
https://doi.org/10.1016/j.jmst.2024.04.032
 
3. S.R. Paital, N.B. Dahotre, Mat. Sci. Eng. R, 1, 66, (2009). 
https://doi.org/10.1016/j.mser.2009.05.001
 
4. M. Rahman, Y. Li, C. Wen, J. Magnes. Alloy, 8, 929, (2020). 
https://doi.org/10.1016/j.jma.2020.05.003
 
5. J.S. Son, M. Appleford, J.L. Ong, J.C. Wenke, et al., J. Controlled Release, 153, 133 (2011). https://doi.org/10.1016/j.jconrel.2011.03.010
https://doi.org/10.1016/j.jconrel.2011.03.010
 
6. R. Li, K. Chen, G. Li, et al., J. Mol. Struct, 34, 1120, (2016). https://doi.org/10.1016/j.molstruc.2016.05.017
https://doi.org/10.1016/j.molstruc.2016.05.017
 
7. I. Ielo, G. Calabrese, G. De Luca, S. Conoci, Int. J. Mol. Sci, 23, 9721, (2022). https://doi.org/10.3390/ijms23179721
https://doi.org/10.3390/ijms23179721
 
8. H. Shi, Z. Zhou, W. Li, et. al., Cryst,, 11, 149, (2021). https://doi.org/10.3390/cryst11020149
https://doi.org/10.3390/cryst11020149
 
9. A. Synytsia, O. Sych, T. Babutina, et al., Funct. Mater, 29, 299, (2022). https://doi.org/10.15407/fm29.04.506
https://doi.org/10.15407/fm29.04.506
 
10. T. Varadavenkatesan, R. Vinayagam, S. Pai, et al., Prog. Org. Coat, 151, 106056, (2021). https://doi.org/10.1016/j.porgcoat.2020.106056
https://doi.org/10.1016/j.porgcoat.2020.106056
 
11. H.Y. Xu, N. Gu, Front. Mater. Sci, 8, 20, (2014). https://doi.org/10.1007/s11706-014-0232-1
https://doi.org/10.1007/s11706-014-0232-1
 
12. A. Synytsia, P. Zaremba, S. Zahorodnia, et al., Funct. Mater, 29, 506, (2022). 
https://doi.org/10.15407/fm29.04.506
 
13. F. Heidari, M. Razavi, M.E. Bahrololoom, et al., Mater. Sci. Eng. C, 65, 338, (2016). 
https://doi.org/10.1016/j.msec.2016.04.039
 
14. M. Kamitakahara, N. Ohtoshi, M. Kawashita, et al., J Mater Sci: Mater Med, 27, (2016). 
https://doi.org/10.1007/s10856-016-5704-7
 
15. S. Mondal, P. Manivasagan, S. Bharathiraja, et al., Nanomater, 7, 426, (2017). 
https://doi.org/10.3390/nano7120426
 
16. D.A.C. Ferreira-Ermita, F.L. Valente, E.C. Carlo-Reis, et al., Results in Materials, 5, 100063, (2020). 
https://doi.org/10.1016/j.rinma.2020.100063
 
17. M.A. Nazeer, E. Yilgör, I. Yilgör, Carbohydr. Polym, 175, ,38, (2017). 
https://doi.org/10.1016/j.carbpol.2017.07.054
 
18. M.K. Hassan, S.A.A. Abdelrehim, T.A. Elkhooly, et al, Thin Solid Films, 798, 140378, (2024). 
https://doi.org/10.1016/j.tsf.2024.140378
 
19. D.-E. Radulescu, I.A. Neacsu, A.-M. Grumezescu, E. Andronescu, Polym, 14, 899, (2022). 
https://doi.org/10.3390/polym14050899
 
20. A. Synytsia, O. Sych, A. Iatsenko, et al., Appl Nanosci, 12, 929, (2022). 
https://doi.org/10.1007/s13204-021-01797-5
 
21. A.I. Khomenko, E.V. Khomenko, Powder Metall Met Ceram, 46, 100, (2007). 
https://doi.org/10.1007/s11106-007-0016-6
 
22. S.A. Saltikov The determination of the size distribution of particles in an opaque material from a measurement of the size distribution of their sections. Elias, H. (eds) Stereology. Springer, Berlin (1967).
https://doi.org/10.1007/978-3-642-88260-9_31
 
23. O. Sych, O. Otychenko, N. Ulianchych, et al., AdvNanoBioM&D, 2, 287, (2018).
 
24. O. Sych, N. Pinchuk, T. Tomila, et al., AdvNanoBioM&D, 4, 617, (2020).
 
25. A. Synytsia, O. Sych, V. Zenkov, et al., Surface, 15, 97, (2023). 
https://doi.org/10.15407/Surface.2023.15.097
 

Current number: