Funct. Mater. 2024; 31 (4): 601-608.

doi:https://doi.org/10.15407/fm31.04.601

Flavonol assisted extraction of divalent and trivalent metal ions

O.O. Demidov, A.V. Krasnopyorova, G.D. Yukhno, N.V. Efimova, A.D. Roshal

Research Institute of Chemistry at V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine.

Abstract: 

The work is devoted to investigations of extraction methods for the isolation and accumulation of divalent and trivalent metal ions Mn2+, Ni2+, Cu2+, Zn2+, Y3+ and Ce3+ in the absence and presence of flavonol derivatives with different numbers and locations of complexation sites. Two extraction methods were used and compared: the classical LL – water-organic phase (octanol) and the ATPS method – with two separated aqueous phases in the presence of polyethylene oxide 4000. It was shown that the presence of flavonols in the extraction system leads to a significant increase in the extraction efficiency with the exception of Ni2+ ions. It turned out that the most effective concentration of Zn2+ ions can be achieved using LL extraction, for other ions ATPS extraction is more effective. The use of flavonols to increase the efficiency of metal ion extraction allows increasing the sensitivity and selectivity of methods for quantitative analysis of the studied metal ions.

Keywords: 
flavonols, metal ion extractions, complexation, LL extraction, ATPS extraction.
References: 

1. M. Khater, D. Ravishankar, F. Greco, H. M. Osborn. Future Med. Chem. 11, 2845–2867 (2019). doi: 10.4155/fmc-2019-0237.

2. M.M. Kasprzak, A. Erxlebenc, J. Ochocki. RSC Adv. 5, 45853–45877 ( 2015) .

doi: 10.1039/C5RA05069C.

3. O. Prakash, B. Belal, J. Dhanik, et al. Univers. J. Chem. 7 , 1–24 (2020).

doi: 10.13189/ujc.2020.070101.

4. A .D. Roshal. Chem. Rec. 24 , art.num. e2023002492023 (2024).

doi: 10.1002/tcr.202300249.

5. A.D. Roshal, A.V. Grigorovich, A.O. Dorochenko, V.G. Pivovarenko et al. J. Phys. Chem. A. 102 , 5907–5914 (1998). doi: 10.1021/ jp972519w.

6. A.D. Roshal, A.V. Grigorovich, A.O. Dorochenko, V.G. Pi vovarenko et al., J. Photochem. Photobiol. A: Chem. 127 , 89–100 (1999).

doi: S1010-6030(99)00105-7.

7. A.D. Roshal, T.V. Sakhno, A.A. Verezubova, L.M. Ptiagina et al. Funct. Mater., 10 , 419–426 (2003). doi: 10.15407/fm10.03.419.

8. J.E. Brown, H. Khodr, R.C. Hider, A. Rice-Evans. Biochem. J. 330 , 1173–1178 (1998). doi: 10.1042/bj3301173.

9. J. Pusz, M. Copacz. Pol. J. Chem. 66 , 1935–1940 (1992).

10. G. Erdogan, R. Karadag, E. Dolen, Rev. Anal. 24 , 247–261 (2005). doi: 10.1007/s10812-013-9838-9.

11. S.A. Shapovalov, A.D. Roshal. Functionalized photometric and fluorimetric reagents in chemical analysis of metals and boron derivatives, Brovin, Kharkiv, 2021.

12. G. Rauret. Talanta. 46 , 449–455 (1998). doi: 10.1016/S0039-9140(97)00406-2.

13. H. Agemian, A. S. Y. Chau. Analyst. 101 , 761–767 (1976). doi: 10.1039/AN9760100761.

14. M. Iqbal, Y. Tao, Sh. Xie, Y. Zhu, et al. Biol Proced Online. 18 , art. num. 18 (2016).

doi: 10.1186/s12575-016-0048-8.

15. T.T. Teng, Y. Yusup, L.W. Low. In: Stoichiometry and Research - The Importance of Quantity in Biomedicine. Ed.: A. Innocenti (2012). doi: 10.5772/33199.

16. H. Xie, D.T. Jones. Anal.Chem. 69 , 4697–4703 (1997). doi: 10.1021/ac970388d.

17. F. Dong, Ch. Jian, F. Zhenghao, G. Kai, et al. Catalysis Comm. 9 , 1924–1927 (2008).

doi: 10.1016/j.catcom.2008.03.023.

18. M. Bennett, A.J. Burke ,W.I. O′Sullivan. Tetrahedron. 52 , 7163–7178 (1996). doi: 10.1016/0040-4020(96)00334-1.

19. E.S. Gladkov, O.D. Roshal, O.O. Demidov, A.A. Manvelian. Patent UA 150472, Bull. 8/2022.

20. S.B. Savvin. Talanta. 8 , 673­–685 (1961). doi:10.1016/0039-9140(61)80164-1.

21. B.E. Lang. J. Chem. Eng. Data. 57 , 2221–2226 (2012). doi: 10.1021/je3001427.

22. Ch. Yin, J. Fu, X. Lu. Rapid Commun. Mass Spectrom. 34 , art. num. e8719 (2020).

doi: 10.1002/rcm.871 9 .

23. A.P. Krasnopyorova, R.Y. Iliashenko, G.D. Yukhno, N.V. Efimova, et al. J. Mol. Struct. 1302 , art. num. 137459 (2024).

doi: 10.1016/j.molstruc.2023.137459.

Current number: