Funct. Mater. 2024; 31 (4): 630-637.
Prospects of using MOF/TiO2 nanocomposites for photocatalytic degradation of pesticides
1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv 03056, Ukraine
2State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant protection, Chinese Academy of Agriculture Science, Beijing 100193, China
Cleaning water bodies from fourth-generation pesticides is an urgent problem today. In this study, a series of nanocomposites based on MOF (NH2-MIL-125) and commercial titanium (IV) oxide P25 were synthesized and characterized, and their photocatalytic activity towards imidacloprid was determined. MOF and MOF/TiO2 composites were synthesized by a simple solvothermal method. The synthesized MOF and MOF/TiO2 composite were characterized by XRD, electron microscopy, UV-visible, infrared and FTIR spectroscopy, and TGA analysis. The studies showed that TiO2 and MOF have typical properties, and the properties of the composite were similar to those of MOF. The found band gap values of MOF and MOF/TiO2 composite (2.68 eV and 2.58 eV) indicate their potential use visible light photocatalytic processes. The photocatalytic activity study indicates a two-step degradation of imidacloprid, which is quite efficient for the MOF/TiO2 composite with the highest titanium (IV) oxide content, reaching almost 100% after 2 h our of photocatalytic reaction.
1. Mu H, Yang X, Wang K, et al., Chemosphere, 326, 138428 (2023). https://doi.org/10.1016/j.chemosphere.2023.138428 |
||||
2. Zhang X, Huang Y, Chen WJ, et al., Environ. Res., 218, 114953 (2023). https://doi.org/10.1016/j.envres.2022.114953 |
||||
3. Mojiri A, Zhou JL, Robinson B, et al., Chemosphere, 253, 126646 (2020). https://doi.org/10.1016/j.chemosphere.2020.126646 |
||||
4. Asghar A, Mabarak S, Ashraf B, et al., Inorg. Chem. Commun., 159, 111790 (2024). https://doi.org/10.1016/j.inoche.2023.111790 |
||||
5. Roshani M, Nematollahi D, Ansari A, et al., Chemosphere, 346, 140597 (2024). https://doi.org/10.1016/j.chemosphere.2023.140597 |
||||
6. Pirsaheb M, Moradi N., RSC Adv., 10, 7396-7423 (2020). https://doi.org/10.1039/C9RA11025A |
||||
7. GOH PS, Ahmad NA, Wong TW, et al., Chemosphere, 307(3), 136018 (2022). https://doi.org/10.1016/j.chemosphere.2022.136018 |
||||
8. Kuzminchuk A, Burmak A, Litynska M, et al., Appl. Nanosci., 13, 5335-5343 (2023). https://doi.org/10.1007/s13204-023-02792-8 |
||||
9. Dontsova T, Kyrii S, Yanushevska O, et al., Chem. Pap., 76, 7667-7683 (2022). https://doi.org/10.1007/s11696-022-02433-4 |
||||
10. Kutuzova A, Dontsova T, Kwapinski W, et al., Mol. Cryst. Liq. Cryst ., 751, 28-40 (2022). https://doi.org/10.1080/15421406.2022.2073526 |
||||
11. Ribeiro AR, Nunes OC, Pereira MFR, et al., Environ. Int., 75, 33-51 (2015). https://doi.org/10.1016/j.envint.2014.10.027 |
||||
12. Bartolomeu M, Neves MGPMS, Faustino MAF, et al., Photochem. Photobiol. Sci., 17, 1573-1598 (2020). https://doi.org/10.1039/c8pp00249e |
||||
13. Varma KS, Tayade RJ, Shah KJ, et al., Water-Energy Nexus, 3, 46-61 (2020). https://doi.org/10.1016/j.wen.2020.03.008 |
||||
14. Wei Z, Liu J, Shangguan W., Chinese J. Catal., 41(10), 1440-1450 (2020). https://doi.org/10.1016/S1872-2067(19)63448-0 |
||||
15. Dontsova TA, Kutuzova AS, Bila KO, et al., J. Nanomater., 2020, 8349480 (2020). https://doi.org/10.1155/2020/8349480 |
||||
16. Kutuzova A, Dontsova T, Kwapinski W., J. Inorg. Organomet. Polym. Mater ., 30, 3060-3072 (2020). https://doi.org/10.1007/s10904-020-01467-z |
||||
17. Kutuzova A, Dontsova T., Proccedings of the 2018 IEEE 8th International Conference Nanomaterials: Application & Properties, 2018 Sep 9-14, Zatoka, Ukraine, 1-5 (2019). https://doi.org/10.1109/NAP.2018.8914747 |
||||
18. Kutuzova A, Dontsova T., Proccedings of the 2017 IEEE 7th International Conference Nanomaterials: Application & Properties, 2017 Sep 10-15, Odessa, Ukraine, 01NNPT02-1-01NNPT02-5 (2017). https://doi.org/10.1109/NAP.2017.8190182 |
||||
19. Fagan R, McCormack DE, Dionysiou DD, et al., Mater. Sci. Semicond. Process., 42(1), 2-14 (2016). https://doi.org/10.1016/j.mssp.2015.07.052 |
||||
20. Kyrii S, Dontsova T, Kosogina I, et al., Eastern-European Journal of Enterprise Technologies, 4(6(112)) 67-74 (2021). https://doi.org/10.15587/1729-4061.2021.238347 |
||||
21. Abdurahman MH, Abdullah AZ, Shoparwe NF., Chem. Eng. J., 413, 127412 (2021). https://doi.org/10.1016/j.cej.2020.127412 |
||||
22. Majumdar A, Pal A., Clean Technol. Environ. Policy, 22, 11-42 (2020). https://doi.org/10.1007/s10098-019-01766-1 |
||||
23. Abbasnia A, Zarei A, Yeganeh M, et al., Inorg. Chem. Commun., 145, 109959 (2022). https://doi.org/10.1016/j.inoche.2022.109959 |
||||
24. Batten SR, Neville SM, Turner DR., Angew. Chem. Int. Ed., 48(27), 4890-4891 (2009). https://doi.org/10.1002/anie.200902588 |
||||
25. Jiao L, Seow JYR, Skinner WS, et al., Mater. Today, 27, 43-68 (2019). https://doi.org/10.1016/j.mattod.2018.10.038 |
||||
26. Falcaro P, Ricco R, Yazdi A, et al., Coord. Chem. Rev., 307(2), 237-254 (2016). https://doi.org/10.1016/j.ccr.2015.08.002 |
||||
27. Karthik P, Balaraman E, Neppolian B., Catal. Sci. Technol., 8, 3286-3294 (2018). https://doi.org/10.1039/C8CY00604K |
||||
28. Horiuchi Y, Toyao T, Saito M, et al., J. Phys. Chem. C., 116(39), 20848-20853 (2012). https://doi.org/10.1021/jp3046005 |
||||
29. Slater AG, Cooper AI., Science, 348(6238) (2015). DOI: 10.1126/science.aaa8075. https://doi.org/10.1126/science.aaa8075 |
||||
30. Forster PM, Thomas PM, Cheetham AK., Chem. Mater., 14(1), 17-20 (2002). D https://doi.org/10.1021/cm010820q |
||||
31. George P, Dhabarde NR, Chowdhury P., Mater. Lett., 186, 151-154 (2017). https://doi.org/10.1016/j.matlet.2016.09.099 |
||||
32. Devic T, Serre C., Chem. Soc. Rev., 43, 6097-6115 (2014). DOI: 10.1039/C4CS00081A. https://doi.org/10.1039/C4CS00081A |
||||
33. Dong J, Cui P, Shi PF, et al., J. Am. Chem. Soc ., 137(51), 15988-15991 (2015). https://doi.org/10.1021/jacs.5b10000 |
||||
34. Low JJ, Benin AI, Jakubczak P, et al., J. Am. Chem. Soc., 131(43), 15834-15842 (2009). https://doi.org/10.1021/ja9061344 |
||||
35. Wang H, Yuan X, Wu Y, et al., J. Hazard. Mater., 286, 187-194 (2015). https://doi.org/10.1016/j.jhazmat.2014.11.039 |
||||
36. González-Burciaga LA, Núñez-Núñez CM, Morones-Esquivel MM, et al., Catalysts, 10(1), 118 (2020). https://doi.org/10.3390/catal10010118 |
||||
37. Yoon JW, Kim DH, Kim JH, et al., Appl. Catal. B: Environ., 244, 511-518 (2019). https://doi.org/10.1016/j.apcatb.2018.11.057 |
||||
38. Dontsova T, Ivanenko I, Astrelin I., Springer Proceedings in Physics: Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies, 167, 275-293 (2015). https://doi.org/10.1007/978-3-319-18543-9_19 |
||||
39. Fidalgo A, Letichevsky S, Santos BF., J. Photochem. Photobiol. A, 405, 112870 (2021). https://doi.org/10.1016/j.jphotochem.2020.112870 |
||||
40. Al-Amin M, Dey S, Rashid T, et al., International Journal of Latest Research in Engineering and Technology, 2, 14-21 (2016). | ||||
41. Castellanos NJ, Rojas ZM, Camargo HA, et al., Transit. Met. Chem ., 44, 77-87 (2019). https://doi.org/10.1007/s11243-018-0271-z |