Funct. Mater. 2024; 31 (4): 638-645.
Synthesis and adsorption performance of Cu-BTC microspheres for Methylene Blue Dye
School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
The MOFs, copper–1,3,5- benzenetricarboxylate (Cu-BTC) samples were synthesized by immersing self-assembled films in solutions of copper nitrate and trimesic acid through a biomimetic mineralization method. During the synthesis, self-assembled monolayers with different end groups acted as templates, facilitating the nucleation and growth of Cu-BTC crystals. The resulting products were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) analysis. The influence of the synthesized materials on the adsorption performance of methylene blue (MB) dye was systematically investigated. The results show that the Cu-BTC compound microspheres, induced by sulfonic acid groups, have a uniform morphology and exhibit effective adsorption of MB dye. The theoretical maximum adsorption capacity of these microspheres for MB dye is 75.6 mg·g–1. The adsorption data from this process are consistent with both the pseudo-first-order kinetic model and the Langmuir isotherm model. After four adsorption-regeneration cycles, the microspheres retained a high adsorption efficiency for MB dye.
. M. Sultan, Environ. Chem. Lett.,347 15 (2017). https://doi.org/10.1007/s10311-016-0597-8 |
||||
2. Y. Sep. Sci. Technol., 1521 57 (2022). | ||||
3. V.V. Datsenko, E.B. Khobotova, Funct. Mater. 31, 296 (2024). | ||||
https://doi.org/10.15407/fm31.02.296 |
||||
4. X.G. Wang, ZB. Liu, Funct. Mater. 30, 377 (2023) . | ||||
https://doi.org/10.15407/fm30.03.377 |
||||
5. A. Jamil, M.A. et al., Korean. J Chem. Eng., 2060 40 ( 2024). https://doi.org/10.1007/s11814-023-1475-2 |
||||
6. Z. N. Liu, A. Fan, C.H. Ho, J Environ. Eng., 04020018 146 (2020). https://doi.org/10.1061/JPEODX.0000167 |
||||
7. Y. Y. Deng, X. F. Xiao, D. Wang, et al., J Nanosci. Nanotechno., 1660 20 (2020). https://doi.org/10.1166/jnn.2020.17157 |
||||
8. X. M. Wu, Inorg. Chem. Front.,2840 7 (2020). https://doi.org/10.1039/C9QI01564G |
||||
9. Y. L. Gao, Y. F Li et al.,Sci.China Chem., 1553 58 (2015). https://doi.org/10.1007/s11426-015-5406-x |
||||
10. Q. Z.Sheng, J. Biomacromolecules 5132 24 (2023). https://doi.org/10.1021/acs.biomac.3c00706 |
||||
11. F. Li, et al. J Cryst. Growth, 33 426 (2015). https://doi.org/10.1016/j.jcrysgro.2015.05.016 |
||||
12. F. Lu,F. F.Meng, L. L.Wang,Y. Q.Dai, Funct. Mater., 26, 54 (2019). https://doi.org/10.15407/fm26.01.54 |
||||
13. R. Kaura, A. Kaura, A. Umar, et al., Mater. Res. Bull.,124, 109(2019). | ||||
14. S.A Long, et al., Ind. Eng. Chem. Res 2956 57 (2018). https://doi.org/10.1021/acs.iecr.7b04496 |
||||
15. J.Y Choi, Mater. Res.Exp., 095505 9 (2022). https://doi.org/10.1088/2053-1591/ac93ea |
||||
16. Y. Z. Chen, et al., New J.Chem., 3358 46 (2022). https://doi.org/10.1039/D1NJ05561E |
||||
17. L. Addadi, S. Raz, S. Weiner, Adv. Mater. 959 15 2003. https://doi.org/10.1002/adma.200300381 |
||||
18. F.C. Meldrum, R.P. Sear, Science,1802 322 (2008). https://doi.org/10.1126/science.1167221 |
||||
19. K. S. W. Sing et al. Pure and Applied Chemistry, 603 57 ( 1985 ) . https://doi.org/10.1351/pac198557040603 |