Funct. Mater. 2024; 31 (4): 638-645.

doi:https://doi.org/10.15407/fm31.04.638

Synthesis and adsorption performance of Cu-BTC microspheres for Methylene Blue Dye

Fei Lu, Qi Guan

School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China

Abstract: 

The MOFs, copper–1,3,5- benzenetricarboxylate (Cu-BTC) samples were synthesized by immersing self-assembled films in solutions of copper nitrate and trimesic acid through a biomimetic mineralization method. During the synthesis, self-assembled monolayers with different end groups acted as templates, facilitating the nucleation and growth of Cu-BTC crystals. The resulting products were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) analysis. The influence of the synthesized materials on the adsorption performance of methylene blue (MB) dye was systematically investigated. The results show that the Cu-BTC compound microspheres, induced by sulfonic acid groups, have a uniform morphology and exhibit effective adsorption of MB dye. The theoretical maximum adsorption capacity of these microspheres for MB dye is 75.6 mg·g–1. The adsorption data from this process are consistent with both the pseudo-first-order kinetic model and the Langmuir isotherm model. After four adsorption-regeneration cycles, the microspheres retained a high adsorption efficiency for MB dye.

Keywords: 
Self-assembled films, Cu-BTC, bionic mineralization; adsorption; methylene blue
References: 
. M. Sultan, Environ. Chem. Lett.,347 15 (2017).
https://doi.org/10.1007/s10311-016-0597-8
 
2. Y. Sep. Sci. Technol., 1521 57 (2022).
 
3. V.V. Datsenko, E.B. Khobotova, Funct. Mater.  31, 296 (2024).
https://doi.org/10.15407/fm31.02.296
 
4. X.G. Wang, ZB. Liu, Funct. Mater.  30, 377 (2023) .
https://doi.org/10.15407/fm30.03.377
 
5. A. Jamil, M.A. et al., Korean. J Chem. Eng., 2060 40 ( 2024).
https://doi.org/10.1007/s11814-023-1475-2
 
6. Z. N. Liu, A. Fan, C.H. Ho, J Environ. Eng., 04020018 146 (2020).
https://doi.org/10.1061/JPEODX.0000167
 
7. Y. Y. Deng, X. F. Xiao, D. Wang, et al., J Nanosci. Nanotechno., 1660 20 (2020).
https://doi.org/10.1166/jnn.2020.17157
 
8. X. M. Wu, Inorg. Chem. Front.,2840 7 (2020).
https://doi.org/10.1039/C9QI01564G
 
9. Y. L. Gao, Y. F Li et al.,Sci.China Chem., 1553 58 (2015).
https://doi.org/10.1007/s11426-015-5406-x
 
10. Q. Z.Sheng, J. Biomacromolecules 5132 24 (2023).
https://doi.org/10.1021/acs.biomac.3c00706
 
11. F. Li, et al. J Cryst. Growth, 33 426 (2015).
https://doi.org/10.1016/j.jcrysgro.2015.05.016
 
12. F. Lu,F. F.Meng, L. L.Wang,Y. Q.Dai, Funct. Mater.,  26, 54 (2019).
https://doi.org/10.15407/fm26.01.54
 
13. R. Kaura, A. Kaura, A. Umar, et al., Mater. Res. Bull.,124, 109(2019).
 
14. S.A Long, et al., Ind. Eng. Chem. Res 2956 57 (2018).
https://doi.org/10.1021/acs.iecr.7b04496
 
15. J.Y Choi, Mater. Res.Exp., 095505 9 (2022).
https://doi.org/10.1088/2053-1591/ac93ea
 
16. Y. Z. Chen, et al., New J.Chem., 3358 46 (2022).
https://doi.org/10.1039/D1NJ05561E
 
17. L. Addadi, S. Raz, S. Weiner, Adv. Mater. 959 15 2003.
https://doi.org/10.1002/adma.200300381
 
18. F.C. Meldrum, R.P. Sear, Science,1802 322 (2008).
https://doi.org/10.1126/science.1167221
 
19. K. S. W. Sing et al. Pure and Applied Chemistry, 603 57 ( 1985 ) .
https://doi.org/10.1351/pac198557040603

Current number: