Funct. Mater. 2025; 32 (1): 108-114.

doi:https://doi.org/10.15407/fm32.01.108

Effective polarizability and optical resonances of a square lattice of rod-like metal nanoparticles on a dielectric substrate

N.I. Pavlyshche1, A.V. Korotun1,2, V.P. Kurbatsky1, R.Yu. Korolkov1

1 National University “Zaporizhzhia Polytechnic” 64 University Str., Zaporizhzhia, 69063, Ukraine,
2 G.V. Kurdyumov Institute for Metal Physics of National Academy of Sciences of Ukraine,36 Academician Vernadsky Blvd., Kyiv, 03142, Ukraine

Abstract: 

Resonance properties of the lattice of rod-like nanoparticles are studied in the local field approximation; the characteristics of single nanoparticles are calculated within the framework of the equivalent spheroid approach. According to the results of the calculations, a blue shift of the maxima of the imaginary part of the effective transverse polarizability for the square lattice of nanocylinders with a decrease in their effective aspect ratio was established. The imaginary part of the effective transverse polarization of the lattice of cylinders is four orders of magnitude greater than the corresponding value for a single cylinder. The lattice resonance frequency increases when metals with a higher plasma frequency are used or when the lattice is placed in a medium with a lower dielectric constant. The obtained results indicate a significant influence of the size, shape, and material of rod-like nanoparticles, as well as the surrounding medium, on the frequency dependence of the imaginary part of the effective transverse polarization of the lattice. The possibility of controlling the lattice resonance frequency by changing the effective aspect ratio of the nanoparticles forming the lattice has been demonstrated. The strong interaction between the constituent elements of the lattice leads to an increase by four orders of magnitude in the imaginary part of the effective transverse polarizability and the absorption cross section of the lattice in comparison with a single nanoparticle.

Keywords: 
effective polarizability, lattice resonance, lattice sums, effective relaxation rate.
References: 
1. P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett., 96, 113002 (2006).
https://doi.org/10.1103/PhysRevLett.96.113002
 
2. K.A. Willets and R.P. Van Duyne, Annu. Rev. Phys. Chem., 58, 267 (2007).
https://doi.org/10.1146/annurev.physchem.58.032806.104607
 
3. L. Chu, Z. Li, H. Zhu, F. Ren, and F. Chen, Appl. Phys. Lett., 120, 073104 (2022).
https://doi.org/10.1063/5.0077592
 
4. A.V. Korotun, H.V. Moroz, and R.Yu. Korolkov, Funct. Mater., 31, 119-127 (2024).
 https://doi.org/10.15407/fm31.01.119
 
5. V. G. Kravets, F. Schedin, A. N. Grigorenko, Phys. Rev. Lett., 101, 087403 (2008).
https://doi.org/10.1103/PhysRevLett.101.087403
 
6. B. Auguié and W.L. Barnes, Phys. Rev. Lett., 101, 143902 (2008).
https://doi.org/10.1103/PhysRevLett.101.143902
 
7. S.R.K. Rodriguez, A. Abass, B. Maes, O.T.A. Janssen, G. Vecchi, and J.G. Rivas, Phys. Rev. X, 1, 021019 (2011).
https://doi.org/10.1103/PhysRevX.1.021019
 
8. N. Meinzer, W. L. Barnes, and I. R. Hooper, Nat. Photonics, 8, 889 (2014).
https://doi.org/10.1038/nphoton.2014.247
 
9. D. Dey, G. C. Schatz, MRS Bull., 49, 421 (2024).
https://doi.org/10.1557/s43577-023-00629-x
 
10. Z. Li, S. Butun, and K. Aydin, ACS Nano, 8, 8242 (2014).
https://doi.org/10.1021/nn502617t
 
11. G. Vecchi, V. Giannini, and J. G. Rivas, Phys. Rev. Lett., 102, 146807 (2009).
https://doi.org/10.1103/PhysRevLett.102.146807
 
12. S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. G. Rivas, Appl. Phys. Lett., 100, 111103 (2012).
https://doi.org/10.1063/1.3693397
 
13. R. Guo, S. Derom, A. I. Väkeväinen, R. J. A. van Dijk-Moes, P. Liljeroth, D. Vanmaekelbergh, and P. Törmä, Opt. Express, 23, 28206 (2015).
https://doi.org/10.1364/OE.23.028206
 
14. P. Törmä and W. L. Barnes, Rep. Prog. Phys., 78, 013901 (2015).
https://doi.org/10.1088/0034-4885/78/1/013901
 
15. A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, P. Törmä, Nano Lett., 14, 1721 (2014).
https://doi.org/10.1021/nl4035219
 
16. L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, P. Törmä, Phys. Rev. Lett., 112, 153002 (2014).
https://doi.org/10.1103/PhysRevLett.112.153002
 
17. J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, U. Scherf, Adv. Mater., 15, 1726 (2003).
https://doi.org/10.1002/adma.200305221
 
18. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, T. W. Odom, Nat. Nanotechnol., 8, 506 (2013).
https://doi.org/10.1038/nnano.2013.99
 
19. X. Meng, J. Liu, A. V. Kildishev, V. M. Shalaev, Laser Photon. Rev., 8, 896 (2014).
https://doi.org/10.1002/lpor.201400056
 
20. T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Necada, A. J. Moilanen, and P. Törmä, Nat. Commun., 8, 13687 (2017).
https://doi.org/10.1038/ncomms13687
 
21. N. Maccaferri, X. Inchausti, A. García-Martín, J. C. Cuevas, D. Tripathy, A. O. Adeyeye, P. Vavassori, ACS Photonics, 2, 1769 (2015).
https://doi.org/10.1021/acsphotonics.5b00490
 
22. L. Cerdán, J. R. Deop-Ruano, J. J. Alvarez-Serrano, A. Manjavacas, Adv. Opt. Mater., 12, 2302737 (2024).
https://doi.org/10.1002/adom.202302737
 
23. A. D. Humphrey, N. Meinzer, T. A. Starkey, W. L. Barnes, ACS Photonics, 3, 634 (2016).
https://doi.org/10.1021/acsphotonics.5b00727
 
24. D. Wang, A. Yang, A. J. Hryn, G. C. Schatz, T. W. Odom, ACS Photonics, 2, 1789 (2015).
https://doi.org/10.1021/acsphotonics.5b00546
 
25. A. V. Korotun, Ya. V. Karandas, V. I. Reva, Ukr. J. Phys., 67, 849-858 (2022).
https://doi.org/10.15407/ujpe67.12.849
 
26. A. V. Korotun and N. I. Pavlyshche, Funct. Mater., 29, 567, (2022).
https://doi.org/10.15407/fm29.04.567
 
27. A.O. Koval, J. of Nano- Electron. Phys., 15, 01014 (2023).
https://doi.org/10.21272/jnep.15(1).01014
 
28. A. V. Korotun, Ukr. J. Phys., 68, 695-704 (2023).
https://doi.org/10.15407/ujpe68.10.695
 
29. D. Constantin, Eur. Phys. J. E, 38, 116 (2015).
https://doi.org/10.1140/epje/i2015-15116-2
 
30. G. Schatz, J. Mol. Struct. THEOCHEM, 573, 73 (2001).
https://doi.org/10.1016/S0166-1280(01)00545-0
 
31. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B, 107, 668 (2003).
https://doi.org/10.1021/jp026731y
 
32. V. A. Kosobukin, Phys. Solid State, 54, 2471-2480 (2012).
https://doi.org/10.1134/S1063783412120207
 
33. 33. J. M. Borwein, M. L. Glasser, R. C. McPhedran, J. G. Wan, and I. J. Zucker, Lattice Sums Then and Now (Cambridge University Press, 2013).

Current number: