Funct. Mater. 2025; 32 (1): 161-165.

doi:https://doi.org/10.15407/fm32.01.161

Multifractal approach to assessing the heterogeneity of carbon alloys

A. Nikitin1, D.B. Hlushkova2, V.M. Volchuk3, V.M. Ragulin2

1Brandenburg University of Technology Cottbus Senftenberg, Magdeburger Straße 50, 14770 Brandenburg an der Havel, Germany
2Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo Str., 61002 Kharkiv, Ukraine
3Prydniprovska State Academy of Civil Engineering and Architecture, 24a Architect Oleh Petrov Str., 49000 Dnipro, Ukraine

Abstract: 

A multifractal structural analysis of carbon alloy structures after multi-stage flow processing was carried out. The statistical dimensions of the D-300 structure varied from 4.18 to 2.47, indicating the compactness of filling the space with martensite, bainite and pearlite. Indicators of the statistical dimension of cementite in the range from 2.18 to 1.55 characterize the dimension of the D300 structure. The fractal D0, information D1, correlation D2 dimensions of martensite, bainite, pearlite also varied in the range from 2.66 to 2.13, indicating the heterogeneity of the structure. A one-to-one correspondence between the multifractal indicators of the structure and the hardness of the iron-carbon alloy was established.

Keywords: 
carbon alloys, multifractal, structure, hardness, statistical dimensions, orderliness, regularity.
References: 

1. A. Rogovyi, S. Khovanskyy, I. Grechka, J. Pitel, Lecture Notes in Mechanical Engineering, 682-691 (2020) https://doi.org/10.1007/978-3-030-22365-6_68

2. O.M. Vynogradov. Reduction of costs for foundry production, Casting of Ukraine, 3, 5-8 (2005).

3. A. Rogovyi, Energy, 163, 52–60 (2018)
https://doi.org/10.1016/j.energy.2018.08.075

4. V. Maslova, R. Nastase, G. Veryasov, N. Nesterenko, E. Fourré, C. Batiot-Dupeyrat, Progress in Energy and Combustion Science, 101, 101096 (2024).
https://doi.org/10.1016/j.pecs.2023.101096

5. Y.V. Batygin, S.F. Golovashchenko, A.V. Gnatov, Journal of Materials Processing Technology, 213(3), 444 - 452 (2013)
http://dx.doi.org/10.1016/j.jmatprotec.2012.10.003

6. P. Andrenko, A. Rogovyi, I. Hrechka, S. Khovanskyi, M. Svynarenko, Journal of Physics: Conference Series, 1741(1) 2021
https://doi.org/10.1088/1742-6596/1741/1/012024

7. L.I. Gladkikh, S.V. Malykhyn, A.T. Pugache, O.M. Reshetnyak, D.B. Glushkova, S.S. D’Yachenko, G.P. Kovtun, Metallofizika i Noveishie Tekhnologii, 6(25), 763-776 (2003).

8. P. Zhang, J. Ding, J. Guo, F. Wang, Fractal and Fractional, 8(6), 304 (2024) https://doi.org/10.3390/fractalfract8060304

9. K.M. Vafaeva, R. Zegait, Research he Engineering Structures and Materials, 10(2), 559 (2024) http://dx.doi.org/10.17515/resm2023.42ma0818rv

10. V.M. Volchuk, O.V. Uzlov, O.V. Puchikov, S.V.Ivantsov, IOP Conference Series: Materials Science and Engineering, 1021(1), 012053, IOP Publishing, (2021)
https://doi.org/10.1088/1757-899X/1021/1/012053

11. D. Kakimzhanov, B. Rakhadilov, L. Sulyubayeva, M. Dautbekov, Coatings, 13(11), 1824 (2023).

12. D.B. Hlushkova, V.A. Bagrov, V.A. Saenko, V.M. Volchuk, A.V. Kalinin, N.E. Kalinina, Problems of Atomic Science and Technology, 144(2), 105 (2023)
https://doi.org/10.46813/2023-144-105

13. D.B. Hlushkova, V.M. Volchuk, P.M. Polyansky, V.A. Saenko, A.A. Efimenko, Functional Materials, 30(2) 275 (2023)
https://doi.org/10.15407/fm30.02.275

14. Y. Wang, A. Karasev, J.H. Park, P.G. Jönsson, Metall Mater Trans, B 52, 2892–2925 (2021). https://doi.org/10.1007/s11663-021-02259-7

15. A. Rogovyi, V. Korohodskyi, S. Khovanskyi, I. Hrechka, Y. Medvediev, Journal of Physics: Conference Series, 1741(1) 2021
https://doi.org/10.1088/1742-6596/1741/1/012018

16. D.B. Hlushkova, Yu.V. Ryzhkov, L.L. Kostina, S.V. Demchenko, Problems of Atomic Science and Technology, 1(113), 208-211 (2018).

17. B.R. Reddivari, S. Vadapalli, B. Sanduru, T. Buddi, K.M. Vafaeva, A. Joshi, Cogent Engineering, 11(1), 2343586 (2024)
https://doi.org/10.1080/23311916.2024.2343586

Current number: