Funct. Mater. 2014; 21 (2): 130-136.
Low temperature characteristics of germanium whiskers
[1] Lviv Polytechnic National University, 1 Kotlyarevski Str., 79013 Lviv, Ukraine
[2] International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw, Poland
Magnetophonone oscillations of magnetoresistance in heavily doped n-Ge whiskers with impurity concentration that corresponds to metal-insulator transition were studied in the temperatures range 4.2-70 K in continuous and pulse magnetic fields up to 14 T and 35 T, respectively. The influence of uniaxial compressive and tentative strain on the magnetophonon oscillations of longitudinal and transverse magnetoresistance of n-Ge whiskers were studied, the intervalley transitions were determined, phonon energy as well as the effective masses of light and heavy electrons in n-Ge whiskers were estimated. Ge whiskers were used for creation of strain-temperature sensors, operating in high magnetic fields and at low temperatures.
1. Y.Hirose, T.Tsukahara, C.Hamaguchi, J. Phys. Soc. Jap., 52, 4291 (1983). http://dx.doi.org/10.1143/JPSJ.52.4291
2. C.Hamaguchi, Y.Hirose, K.Shimomae, Lecture Notes in Phys., 177, 423 (1983). http://dx.doi.org/10.1007/3-540-11996-5_63
3. H.Futagawa, N.Miura, K.Yamada et al., J. Phys. Soc. Jap., 62, 4407 (1993). http://dx.doi.org/10.1143/JPSJ.62.4407
4. N.Kamata, H.Futagawa, K.Yamada et al., Semicond. Sci. Technol., 7, 639 (1992). http://dx.doi.org/10.1088/0268-1242/7/3B/010
5. S.Chil Lee, J.Yon Kim, D.Chul Kim, D.Lak Kimy et al., J. Korean Phys. Soc., 32, 138 (1998).
6. D.Schneider, C.Brink, G.Irmer et al., Phys. B: Phys. Condens. Matter., 256, 625 (1998). http://dx.doi.org/10.1016/S0921-4526(98)00685-1
7. C.Faugeras, D.K.Maude, G.Martinez et al., Phys. Rev. B, 69, 673405 (2004). http://dx.doi.org/10.1103/PhysRevB.69.073405
8. D.Shik Kang, S.Chil Lee, S.Whan Kim, J. Korean Phys. Soc., 57, 760 (2010). http://dx.doi.org/10.3938/jkps.57.760
9. N.Miura, N.V.Kozlova, K.Dorr et al., J. Low Temper. Phys., 159, 222 (2010). http://dx.doi.org/10.1007/s10909-009-0122-6
10. G.Tomaka, E.M.Sheregii, J.Cebulski et al., Proc. SPIE, 4413, 248 (2000). http://dx.doi.org/10.1117/12.425440
11. Y.Kim, J.M.Poumirol, A.Lombardo et al., Condens. Matter., 1211, 6094 (2012).
12. O.Kashuba, V.I.Fal'ko, Phys. Rev. B, 87, 161404 (2013). http://dx.doi.org/10.1103/PhysRevB.87.161404
13. O.Kashuba, V.I.Fal'ko, New J. Phys., 14, 105016 (2012). http://dx.doi.org/10.1088/1367-2630/14/10/105016
14. A.I.Klimovskaya, I.V.Prokopenko, S.V.Svechnikov et al., Mater. Sci. and Engin., C19, 205 (2002). http://dx.doi.org/10.1016/S0928-4931(01)00463-5
15. E.G.Gule, G.Yu.Rudko, A.I.Klimovskaya et al., Phys. Stat. Solidi B, 161, 565 (1997). http://dx.doi.org/10.1002/1521-396X(199706)161:2<565::AID-PSSA565>3.0.CO;2-D
16. A.A.Druzhinin, I.I.Maryamova, I.V.Pavlovskiy et al., Visnyk of Lvivska Polytech. Nation. Univ. Electron., 532, 112 (2005).
17. A.Druzhinin, I.Hortynska, I.Maryamova et al., Proc. SPIE, 4413, 143 (2001). http://dx.doi.org/10.1117/12.425418
18. R.T.Payne, Phys. Rev., 139, A570 (1965). http://dx.doi.org/10.1103/PhysRev.139.A570
19. A.N.Voronovski, E.M.Dizhur, E.S.ltskevich, Zh. Eksp. Teor. Fiz., 77, 1119 (1979).
20. A.A.Druzhinin, I.P.Ostrovskiy, N.S.Liach et al., J. Phys. Invest., 9, 71 (2005).