Funct. Mater. 2016; 23 (3): 473-477.

http://dx.doi.org/10.15407/fm23.03.473

Strontium iodide: technology aspects of raw material choice and crystal growth

A.Gektin, S.Vasyukov, E.Galenin, V.Taranyuk, N.Nazarenko, V.Romanchuk

Institute for Scintillation Materials, STC "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

The technological features of SrI2 crystals production are discussed in this paper. The main reasons of deterioration of the purity and quality of the crystals were identified. It is shown that anionic (OH-group) is the basic impurity significantly affecting the scintillation characteristics. Some methods for quality control of SrI2 raw materials and crystals were proposed. Raw materials with pH ≪ 3-4 are preferable for growing high-quality crystals with excellent scintillation parameters.

Keywords: 
scintillation materials, alkali-earth halide, crystal growth,.
References: 

1. W.van Sciver, R.Hofstadter, Phys. Rev., 84, 1062 (1951).
http://dx.doi.org/10.1103/PhysRev.84.1062.2
 
2. R.Hofstadter, E.O'Dell, C.Schmidt, Rev. Sci. Instrum., 35, 246 (1964).
http://dx.doi.org/10.1063/1.1718803
 
3. US Patent, 3,342,745 (1967).
 
4. R.Hofstadter, E.W.O'Dell, C.T.Schmidt, IEEE Trans. Nucl. Sci., 11, 12 (1964).
http://dx.doi.org/10.1109/TNS.1964.4323397
 
5. US Patent, 3,373,279, (1968).
 
6. N.J.Cherepy, G.Hull, A.Drobshoff et al., Appl. Phys. Lett., 92, 083508 (2008).
http://dx.doi.org/10.1063/1.2885728
 
7. N.J.Cherepy, S.A.Payne, S.J.Asztalos et al., IEEE Trans. Nucl. Sci., 56, 873 (2009).
http://dx.doi.org/10.1109/TNS.2009.2020165
 
8. C.M.Wilson, E.V.D.van Loef, J.Glodo et al., Proc. SPIE, 7079, 707917.1 (2008).
 
9. E.V.van Loef, C.M.Wilson, N.J.Cherepy et al., IEEE Trans. Nucl. Sci., 56, 896 (2009).
http://dx.doi.org/10.1109/TNS.2009.2013947
 
10. L.Boatner, J.O.Ramey, J.A.Kolopus et al., J. Cryst. Growth, 379, 63 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2013.01.035
 
11. R.Hawrami, M.Groza, Y.Cui et al., Proc. SPIE, 7079, 70790 (2008).
http://dx.doi.org/10.1117/12.798335
 
12. R.Hawrami, J.Glodo, K.S.Shah et al., J. Cryst. Growth, 379, 73 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2013.04.035
 
13. B.V.Grinyov,L.N.Shpilinskaja(Trefilova), A.M.Kudin et al., Functional Materials, 4, 4 (1997).
 
14. K.A.Kudin, A.V.Kolesnikov, B.G.Zaslavsky et al., Functional Materials,18, 254 (2011).
 
15. Junfeng Chen, Shaohua Wang, Yong Du, Lidong Chen,J. Alloys. Comp., 568, 49 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.03.170
 
16. V.A.Pustovarov, I.N.Ogorodnikov, A.A.Goloshumova et al., Opt. Mater., 34, 126 (2012).
http://dx.doi.org/10.1016/j.optmat.2011.12.012
 
17. V.Pankratov, A.I.Popov, L.Shirmane et al., Radiat. Meas., 56, 13 (2013).
http://dx.doi.org/10.1016/j.radmeas.2013.02.022
 
18. Kazuo Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons (2009).
 
19. H.D.Lutz, H.Christian, J. Molec. Struct., 101, 99 (1983).
http://dx.doi.org/10.1016/0022-2860(83)85013-3
 
20. E.H.P.Cordfunke, A.S.Booij, R.J.M.Konings et al., Thermochim. Acta, 273, 1 (1996).
http://dx.doi.org/10.1016/0040-6031(95)02689-4

Current number: