Funct. Mater. 2015; 22 (4): 514-523.

http://dx.doi.org/10.15407/fm22.04.514

Simplified computations of spin excitations in high-spin carbon nanoclusters and related systems

A.V.Luzanov

STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

Spin excitation spectra for possible molecule-based magnetic structures are evaluated semiempirically. A simplest spin-flip model with singly-excited configurations (SF-CIS) is used. While only a small amount of electron correlation is captured by the SF-CIS scheme, it turns out to be practically useful tool for computing quasi-magnon spectra in large polyradicals. We study examples of three different structural types (graphene nanoribbon with methylene edges, triangulene and Mataga-type model organic ferromagnet). We demonstrate that these systems show different behavior of the spin excitation spectra and different spin heat capacity temperature dependences. It is also shown that the same SF-CIS technique can be useful for describing high-spin states in nanodiamonds with defects.

Keywords: 
large spin states, molecular magnets, spin-flip models, π-conjugated polyradicals, nanodiamond.
References: 

1. π-Electron Magnetism: from Molecules to Magnetic Materials, ed. by J.Veciana, Springer, Berlin (2001). http://dx.doi.org/10.1007/3-540-44684-2

2. Molecular Nanomagnets, ed. by D.Gatteschi, R.Sessoli, J.Villain, Oxford University Press, Oxford (2006). http://dx.doi.org/10.1093/acprof:oso/9780198567530.001.0001

3. S.N.Datta, C.O.Trindle, F.Illas, Theoretical and Computational Aspects of Magnetic Organic Molecules, Imperial College Press, London (2013).

4. Molecular Magnets, Physics and Applications, ed. by J.Bartolome, F.Luis, J.F.Fernandez, Springer, Heidelberg (2014).

5. B.Pilawa, Ann. Phys. (Leipzig), 8, 191 (1999). http://dx.doi.org/10.1002/(SICI)1521-3889(199903)8:3<191::AID-ANDP191>3.0.CO;2-D

6. M.Mitani, Y.Takano,Y.Yoshioka, K.Yamaguchi, J. Chem. Phys., 111, 1309 (1999). http://dx.doi.org/10.1063/1.479317

7. J.A.Crayston, J.N.Devine, J.C.Walton, Tetrahedron, 56, 7829 (2000). http://dx.doi.org/10.1016/S0040-4020(00)00587-1

8. Magnetism: Molecules to Materials, vol.V, ed. by J.S.Miller, M.Drillon, Wiley, Weinheim (2005).

9. A.Rajca, Chem. Rev., 94, 871(194); A.Rajca, Adv. Phys. Org. Chem., 40, 153 (2005); N.M.Gallagher, A.Olankitwanit, A.Rajca, J. Org. Chem., 80, 1291 (2015). http://dx.doi.org/10.1021/jo502505r

10. H.C.Longuet-Higgins, J. Chem. Phys., 18, 265 (1950). http://dx.doi.org/10.1063/1.1747618

11. N.Mataga, Theor. Chim. Acta, 10, 372 (1968). http://dx.doi.org/10.1007/BF00526505

12. A.A.Ovchinnikov, Theor. Chim. Acta, 47, 297 (1978). http://dx.doi.org/10.1007/BF00549259

13. J.N.Murrell, A.Hinchcliffe, Mol. Phys., 11, 101 (1966). http://dx.doi.org/10.1080/00268976600100911

14. J.Koutecky, D.Dohnert, P.E.S.Wormer et al., J. Chem. Phys., 80, 2244 (1984). http://dx.doi.org/10.1063/1.446923

15. A.I.Krylov, Acc. Chem. Res., 39, 83 (2006). http://dx.doi.org/10.1021/ar0402006

16. E.H.Lieb, Phys. Rev. Lett., 62, 1201 (1989). http://dx.doi.org/10.1103/PhysRevLett.62.1201

17. K.Kusakabe, M.Maruyama, Phys. Rev. B, 67, 092406 (2003). http://dx.doi.org/10.1103/PhysRevB.67.092406

18. S.Bhowmick, V.B.Shenoy, J. Chem. Phys., 128, 244717 (2008). http://dx.doi.org/10.1063/1.2943678

19. W.L.Wang, S.Meng, E.Kaxiras, Nano Letters, 8, 241 (2008). http://dx.doi.org/10.1021/nl072548a

20. N.Ota, N.Gorjizadeh, Y.Kawazoe, J. Magn. Soc. Jpn., 34, 573 (2010). http://dx.doi.org/10.3379/msjmag.1008R005

21. M.Hatanaka, J. Phys. Chem. C, 116, 20109 (2012). http://dx.doi.org/10.1021/jp306460m

22. J.Kang, F.Wu, S.-S.Li et al., Appl. Phys. Lett., 100, 153102 (2012). http://dx.doi.org/10.1063/1.3701612

23. J.Li, A.Tang, Chem. Phys. Lett., 170, 359 (1990). http://dx.doi.org/10.1016/S0009-2614(90)87032-M

24. S.Li, J.Ma, Y.Jiang, J. Phys. Chem. A, 101, 5587 (1997). http://dx.doi.org/10.1021/jp970793k

25. M.M.Mestechkin, G.E.Whyman, Mol. Phys., 69, 775 (1990). http://dx.doi.org/10.1080/00268979000100571

26. A.V.Luzanov, Theor. Exp. Chem., 17, 227 (1981); http://dx.doi.org/10.1007/BF00519488

Teor. Eksp. Khim., 27, 413 (1991).

27. H.Bethe, Zeitschrift fur Physik, 71, 205 (1931). http://dx.doi.org/10.1007/BF01341708

28. D.C.Mattis, The Theory of Magnetism, Harper & Row, New York (1965).

29. Y.Nagaoka, Phys. Rev., 147, 392 (1966). http://dx.doi.org/10.1103/PhysRev.147.392

30. G.-s.Tian, J. Phys. A: Math. Gen., 23, 2231 (1990). http://dx.doi.org/10.1088/0305-4470/23/11/046

31. M.Kollar, R.Strack, D.Vollhardt, Phys. Rev. B, 53, 9225 (1996). http://dx.doi.org/10.1103/PhysRevB.53.9225

32. A.V.Luzanov, Yu.F.Pedash, Theor. Exp. Chem., 18, 1 (1982); J. Struct. Chem., 23, 290 (1982). http://dx.doi.org/10.1007/BF00790773

33. A.I.Krylov, Chem. Phys. Lett., 338, 375 (2001). http://dx.doi.org/10.1016/S0009-2614(01)00287-1

34. D.Casanova, L.V.Slipchenko, A.I.Krylov, M.Head-Gordon, J. Chem. Phys., 130, 044103 (2009). http://dx.doi.org/10.1063/1.3066652

35. D.Casanova, M.Head-Gordon, Phys., Chem. Chem. Phys., 11, 9779 (2009). http://dx.doi.org/10.1039/b911513g

36. A.V.Luzanov, J. Struct. Chem., 44, 729 (2004). http://dx.doi.org/10.1007/s10947-005-0052-3

37. A.V.Luzanov, J. Quantum Chem., 108, 671 (2008). http://dx.doi.org/10.1002/qua.21551

38. C.A.Coulson, G.S.Rushbrooke, Proc. Cambridge Phil. Soc., 36, 139 (1940). http://dx.doi.org/10.1017/S0305004100017102

39. A.V.Luzanov, Functional Materials, 21, 437 (2014). http://dx.doi.org/10.15407/fm21.04.437

40. D.J.Klein, Chem. Phys. Lett., 217, 261 (1994); D.J.Klein, L.Bytautas, J. Phys. Chem. A, 103, 5196 (1999). http://dx.doi.org/10.1021/jp990510j

41. M.Hatanaka, in: Graphene Simulation, ed. by J.Gong, Intech, Rijeka, Croatia (2011), p.101.

42. M.R.Philpott, F.Cimpoesu, Y.Kawazoe, Chem. Phys., 354, 1 (2008). http://dx.doi.org/10.1016/j.chemphys.2008.08.015

42. C.Kittel, Thermal Physics, Wiley, New York (1969).

44. R.L.Carlin, Magnetochemistry, Springer, Berlin (1986). http://dx.doi.org/10.1007/978-3-642-70733-9

45. A.V.Luzanov, J. Struct Chem., 43, 711 (2002). http://dx.doi.org/10.1023/A:1022884018770

46. P.Sony, A.Shukla, Comp. Phys. Comm., 181, 821 (2010). http://dx.doi.org/10.1016/j.cpc.2009.12.015

47. S.Talapatra, P.Ganeshan, T.Kim et al., Phys. Rev. Lett., 95, 097201 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.097201

48. L.M.Pham, D.Le Sage, P.L.Stanwix et al., New J. Phys., 13, 045021 (2011). http://dx.doi.org/10.1088/1367-2630/13/4/045021

49. T.Enoki, K.Takai, V.Osipov et al., Chem. Asian J., 4, 796 (2009). http://dx.doi.org/10.1002/asia.200800485

50. N.J.Mayhall, M.Head-Gordon, J. Phys. Chem. Lett., 6, 1982 (2015). http://dx.doi.org/10.1021/acs.jpclett.5b00733

51. A.Brickstock, J.A.Pople, Trans. Farad. Soc., 50, 901 (1954). http://dx.doi.org/10.1039/tf9545000901

52. G.E.Vaiman, A.V.Luzanov, M.M.Mestechkin, Theor. Math. Phys., 28, 634 (1976); A.V.Luzanov, G.E.Whyman, Int. J. Quantum Chem., 20, 1179 (1981). http://dx.doi.org/10.1002/qua.560200604

53. Y.Ma, M.Rohlfing, A.Gali, Phys. Rev. B, 81, 041204 (2010). http://dx.doi.org/10.1103/PhysRevB.81.041204

54. F.Marsusi, J.Sabbaghzadeh, N.D.Drummond, Phys. Rev. B, 84, 245315 (2011). http://dx.doi.org/10.1103/PhysRevB.84.245315

55. A.Ranjbar, M.Babamoradi, M.H.Saani et al., Phys. Rev. B, 84, 165212 (2011). http://dx.doi.org/10.1103/PhysRevB.84.165212

56. C.E.Patrick, F.Giustino, Nature Comm., 4, 20 (2013). http://dx.doi.org/10.1038/ncomms3006

57. V.A.Pushkarchuk, S.Ya.Kilin, A.P.Nizovtsev et al., Optics Spectrosc., 108, 247 (2010); A.P.Nizovtsev, S.Ya.Kilin, A.L.Pushkarchuk et al., New J. Phys., 16, 083014 (2014). http://dx.doi.org/10.1088/1367-2630/16/8/083014

58. C.Bosted, L.Landt, T.Moller et al., in: Nature's Nanostructures, ed. by A.Barnard, H.Guo, Pan Stanford Publishing, Singapore (2012), p.169. http://dx.doi.org/10.1201/b11618-8

59. M.W.Doherty. N.B.Manson, P.Delaney et al., Phys. Rep., 528, 1 (2013). http://dx.doi.org/10.1016/j.physrep.2013.02.001

60. N.Ohmichi, A.Tajiri, T.Nakajima, Bull. Chem. Soc. Jpn., 45, 3026 (1972). http://dx.doi.org/10.1246/bcsj.45.3026

61. A.Gali, Phys. Rev. B, 79, 235210 (2009). http://dx.doi.org/10.1103/PhysRevB.79.235210

Current number: