Вы здесь

Funct. Mater. 2017; 24 (4): 547-554.

doi:https://doi.org/10.15407/fm24.04.547

Structural investigation of As-Se chalcogenide thin films with different compositions: formation, characterization and peculiarities of volume and near-surface nanolayers

O.Kondrat1, R.Holomb1, V.Mitsa1, M.Veres2, N.Tsud3

1Institute of Solid State Physics and Chemistry, Uzhhorod National University, 54 Voloshin Str., 88000 Uzhhorod, Ukraine
2Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1121 Budapest, Hungary
3Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, 2 V.Holesovickach Str., 18000 Prague 8, Czech Republic

Abstract: 

As20Se80, As40Se60 and As50Se50 films were studied by Raman spectroscopy in order to examine the local- and medium-range order of the structure. In addition, X-ray photoelectron, Raman and surface enhanced Raman spectroscopy were used to characterize the structural peculiarities at the top surface of As-Se nanolayers. Raman investigations reveal the dominance of the As2Se3 and As4Se4 molecules in the volume of the As40Se60 and As50Se50 films and significant contribution of Se in the structure of the As20Se80 film. The composition and local structure of the surfaces were determined by curve fitting of the experimental X-ray photoelectron As 3d and Se 3d core level spectra. A significant Se-enrichment was found at the near-surface layers in comparison with the composition of deeper layers which is confirmed by the dominance of As-3Se structural units in all compositions. This enrichment was also observed by surface enhanced Raman spectroscopy. Processes of arsenic oxidation and desorption of the oxidized products are impacting the structure of the surface layers of As20Se80, As40Se60 and As50Se50 films.

Keywords: 
chalcogenide glass, amorphous film, As-Se nanolayers, X-ray photoelectron spectra, surface enhanced Raman spectra, structural units.
References: 

1. J.C.Phillips, J. Non-Cryst. Solids, 43, 37 (1981). https://doi.org/10.1016/0022-3093(81)90172-1

2. P.Krecmer, A.M.Moulin, R.J.Stephenson et al., Science, 277, 1799 (1997). https://doi.org/10.1126/science.277.5333.1799

3. M.A.Iovu, M.S.Iovu, S.D.Shutov et al., J. Optoelec. Adv. Mat., 3, 473 (2001).

4. V.Aiyah, S.D.Kasap, B.Polischuk, A.Bailie, J. Non-Cryst. Solids, 164-166, 777 (1993). https://doi.org/10.1016/0022-3093(93)91112-G

5. V.M.Lyubin, J. Non-Cryst. Solids, 97-98, 47 (1987). https://doi.org/10.1016/0022-3093(87)90012-3

6. G.Pfeiffer, M.A.Paesler, S.G.Agarwal, J. Non-Cryst. Solids, 130, 111 (1991). https://doi.org/10.1016/0022-3093(91)90449-G

7. M.Hammam, G.J.Adriaenssens, W.Grevendonk, J. Phys. C:Solid State Phys., 18, 2151 (1985). https://doi.org/10.1088/0022-3719/18/10/020

8. V.Mitsa, Doctoral Thesis, Institute of Semiconductors Physics, NAS of Ukraine, Kyiv (2003).

9. S.I.Simdyankin, T.A.Niehaus, G.Natarajan et al., Phys. Rev. Lett., 94, 086401(1-4) (2005).

10. K.Antoine, J.Li, D.A.Drabold et al., J. Non-Cryst. Solids, 326-327, 248 (2003). https://doi.org/10.1016/S0022-3093(03)00402-2

11. Ke.Tanaka, J. Optoelectron. Adv. Mater., 3, 189 (2001).

12. N.Terakado, Ke.Tanaka, Appl. Phys. Express, 1, 081501(1-3) (2008).

13. R.Holomb, N.Mateleshko, V.Mitsa et al., J. Non-Cryst. Sol., 352, 1607 (2006). https://doi.org/10.1016/j.jnoncrysol.2005.12.024

14. O.Kondrat, R.Holomb, A.Csik et al., Nanoscale Res. Lett., 12, 149 (2017). https://doi.org/10.1186/s11671-017-1918-y

15. S.Krishnaswami, H.Jain, A.C.Miller, J. Optoelect. Adv. Mat., 3, 695 (2001).

16. O.Kondrat, N.Popovich, R.Holomb et al., Thin Solid Films, 520, 7224 (2012). https://doi.org/10.1016/j.tsf.2012.07.116

17. J.J.Yeh, Atomic Calculation of Photoionization Cross-sections and Asymmetry Parameters, Gordon and Breach Science Publishers, Langhorne, PE (USA) (1993) and from J.J. Yeh and I. Lindau, Atomic Data and Nuclear Data Tables, 32, 1 (1985). https://doi.org/10.1016/0092-640X(85)90016-6

18. Choi Duk-Yong, M.Steve, R.Andrei et al., J. Appl. Phys., 102, 083532-5 (2007). https://doi.org/10.1063/1.2798936

19. D.Briggs, M.P.Seah, Practical Surface Analysis, vol.1, 2nd ed., John Wiley & Sons, New York, NY, USA (1993).

20. C.D.Wanger, W.M.Riggs, L.E.Davis et al., Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA (1979).

21. O.Kondrat, N.Popovich, R.Holomb et al., J. Non-Cryst. Solids, 358, 2910 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.07.025

22. O.Kondrat, N.Popovich, R.Holomb et al., Phys. Stat. Sol. C, 7, 893 (2010).

23. O.Kondrat, R.Holomb, N.Popovich et al., J. Non-Cryst. Solids, 410, 180 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.12.013

24. P.R.Sarode, K.J.Rao, M.S.Hegd, C.N.R.Rao, J. Phys. C:Solid State Phys., 12, 4119 (1979). https://doi.org/10.1088/0022-3719/12/19/028

25. T.Ueno, A.Odajima, Jpn. J. Appl. Phys., 20, L501 (1981). https://doi.org/10.1143/JJAP.20.L501

26. T.Ueno, Jpn. J. Appl. Phys., 22, 1469 (1983). https://doi.org/10.1143/JJAP.22.1469

27. M.K.Bahl, R.O.Woodall, R.L.Watson, K.J.Irgolic, J. Chem. Phys., 64, 1210 (1976). https://doi.org/10.1063/1.432320

28. T.N.Shchurova, N.D.Savchenko, A.B.Kondrat, I.I.Opachko, Surf. Interface Anal., 38, 448 (2006). https://doi.org/10.1002/sia.2297

29. M.Janai, P.S.Rudman, F.Mandelbaum, J. Non-Cryst. Solids, 27, 67 (1978). https://doi.org/10.1016/0022-3093(78)90037-6

30. K.Antoine, H.Jain, M.Vlcek et al., Phys. Rev. B, 79, 054204(1-7) (2009).

31. Ping Chen, P.Boolchand, D.G.Georgiev, J. Phys. Condens. Matter, 22, 065104(16) (2010).

Current number: