Вы здесь

Funct. Mater. 2019; 26 (4): 703-709.

doi:https://doi.org/10.15407/fm26.04.703

Synthesis of ZnWO4:Eu3+ and ZnxMg1-xWO4:Eu3+ X-ray-excitable phosphor nanoparticles

I.A.Tupitsyna1,4, A.G.Yakubovskaya1,4, A.N.Puzan3, O.M.Vovk2

1Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine
2Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine
3SSI "Institute for Single Crystals", STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
4V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

ZnWO4:Eu3+ and ZnxMg1-xWO4:Eu3+ nanoparticles were obtained by the microwave-hydrothermal and the flux methods. The optimal conditions for obtaining nanocrystals with bright luminescence in the "red" spectral region are determined. The X-ray luminescence intensity of the 614 nm band for ZnWO4:Eu3+ and Zn0.685Mg0.285Eu0.03WO4 nanoparticles are 71 % and 108 %, respectively, versus the 500 nm intrinsic X-ray luminescence intensity of ZnWO4 single crystal. ZnWO4:Eu3+ and ZnxMg0.97-xEu0.03WO4 scintillation nanomaterials are promising for luminescent tomography for visualization of biological objects.

Keywords: 
tungstate nanocrystals, X-ray phosphor, luminescent tomography.
References: 

1. G.Pratx, C.M.Carpenter, C.Sun et al., Opt. Lett., 35, 3345 (2010).

2. D.Chen, F.Meng, F.Zhao et al., BioMed Res. Intern., 1 (2016).

3. P.Gao, J.Rong, H.Pu et al., Opt. Express, 26, 23233 (2018).

4. D.Chen, C.A.Dougherty, D.Yang et al., Tomography, 2, 3 (2016).

5. D.Chen, S.Zhu, X.Chen et al., Appl. Phys. Lett., 105, 191104 (2014)

6. J.C.Larsson, C.Vogt, W.Vagberg et al., Phys. Med. Biol., 63, 164001 (2018)

7. R.Duncan, Y.-N.Sat, Ann. Oncol., 9, 39(1998).

8. H.Maeda, J. Control Release, 164, 138 (2012).

9. S.Stolik, J.A.Delgado, A.Perez et al., J. Photochem. Photobiol, B, 57, 90 (2000).

10. L.Sudheendra, G.K.Das, C.Li et al., Chem. Mater., 26, 1881 (2014).

11. S.Dufort, L.Sancey, C.Wenk et al., BBA Biomembranes, 1798, 2266 (2010).

12. Y.Yang, Q.Shao, R.Deng et al., Angew. Chem., Int, Ed., 51, 3125 (2012).

13. L.Huo, J.Zhou, R.Wu et al., Opt. Mater. Express, 6, 1056 (2016).

14. M.Alkahtani, Y.Chen, J.J. Pedraza et al., Opt.Express, 25, 1030 (2017).

15. Z.Yi, W.Lu, C.Qian et al., Biomater. Sci., 2, 1404 (2014).

16. M.Rahmani, T.Sedaghat, J. Inorg. Organomet. Polym., 29, 220 (2019).

17. Y.Wu, S.C.Zhang, L.W.Zhang et al., Chem. Res. Chin. Univ., 23, 465 (2007).

18. S.J.Chen, J.H.Zhou, X.T.Chen et al., Chem. Phys. Lett., 375, 185 (2003).

19. C.Di, S.Guozhen, T.Kaibin et al., Elsevier, v.8, 1783 (2003).

20. J.Bi, L.Wu, Z.Ding et al., J. Alloys Compd., 480, 684 (2009).

21. J.Xiaohui, M.Junfeng, L.Jun et al., Elsevier, v.61, 4595 (2007).

22. M.Mai, C.Feldmann, J. Mater. Sci., 47, 1427 (2012).

23. V.S.Tinkova, A.G.Yakubovskaya, I.A.Tupitsyna et al., Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 1-2, 40 (2019).

24. A.Tupitsyna, P.O.Maksimchuk, A.G.Yakubovskaya et al., Functional Materials, 24, 16 (2017).

25. D.Spassky, S.Omelkov, H.Magi et al., Opt. Mat., 36, 1660 (2014).

26. A.Yakubovskaya, I.Tupitsyna, D.Sofronov et al., Functional Materials, 20, 523 (2013).

27. Q.Dai, H.Song, X.Bai et al., J. Phys, Chem, C, 111, 7586 (2007).

28. I.A.Tupitsyna, P.O.Maksimchuk, A.G.Yakubovskaya et al., Functional Materials, 23, 535 (2016).

Current number: