Funct. Mater. 2019; 26 (4): 779-783.

doi:https://doi.org/10.15407/fm26.04.779

Study on mechanical properties of modified nano-concrete based on carbon nanotubes

Y.Zhang, L.Xia, S.Wang

Chizhou Vocational and Technical College, Chizhou, 247000 Anhui, China

Abstract: 

The influence of modified carbon nanotubes (P-CNT) and unmodified carbon nanotubes (CNT) on the compressive strength and crack strength of concrete materials under condition of the fixed water-cement ratio was studied. The results show that, when the water-cement ratio is 0.4, the optimal content of plasma carbon nanotubes (P-CNT) is about 0.3 %, the appropriate quantity of the plasma carbon nanotubes can be evenly dispersed in the concrete material, and the mechanical properties of concrete can be effectively improved.

Keywords: 
multiwalled carbon nanotubes, concrete, water cement ratio, mechanical properties.
References: 

1. D.R.Kauffman, D.C.Sorescu, D.P.Schofield, Nano Lett., 10, 958 (2010). https://doi.org/10.1021/nl903888c

2. M.Mazaheri, D.Mart, Z.R.Hesabi, Composites .Sci. Technol., 71, 939 (2011). https://doi.org/10.1016/j.compscitech.2011.01.017

3. M.K.Yeh, N.H.Tai, J.H.Liu, Carbon, 44, 1 (2006). https://doi.org/10.1016/j.carbon.2005.07.005

4. O.Mendoza, G.Sierra, N.J.I.Tob, Constr. Build. Mater., 47, 771 (2013). https://doi.org/10.1016/j.conbuildmat.2013.05.100

5. F.Azhari, N.Banthia, Cement and Concrete Composites, 34, 866 (2012). https://doi.org/10.1016/j.cemconcomp.2012.04.007

6. N.T.Selvan, S.B.Eshwaran, A.Das, Sens. Actuat. A: Physical, 239, 102 (2016). https://doi.org/10.1016/j.sna.2016.01.004

7. M.Liu, Functional Materials, 26, 567 (2019).

8. G.Y.Li, P.M.Wang, X.Zhao, Cement and Concrete Composites, 29, 377 (2007). https://doi.org/10.1016/j.cemconcomp.2006.12.011

9. B.Han, L.Zhang, S.Sun, Composites, Part A: Appl. Sci. Manufact., 79, 103 (2015). https://doi.org/10.1016/j.compositesa.2015.09.016

10. F.Shaikh, S.Supit, Constr. Build. Mater., 99, 208 (2015). https://doi.org/10.1016/j.conbuildmat.2015.09.030

11. M.Ormellese, M.Berra, F.Bolzoni, Cement and Concrete Res., 36, 536 (2016). https://doi.org/10.1016/j.cemconres.2005.11.007

12. G.Qiao, B.Guo, Z.Li, Constr. Build. Mater., 134, 388 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.087

13. G.Li, L.Wang, C.Leung, RSC Advances, 5, 70229 (2015). https://doi.org/10.1039/C5RA11688K

14. F.T.Isfahani, W.Li, E.Redaelli, Cement and Concrete Composites, 74, 154 (2016). https://doi.org/10.1016/j.cemconcomp.2016.09.007

15. G.Y.Li, P.M.Wang, X.Zhao, Carbon, 43, 1239 (2005). https://doi.org/10.1016/j.carbon.2004.12.017

16. K.K.Chew, K.K.Low, Z.S.H.Sharif, J. Mechan. Behavior Biomed. Mater., 4, 331 (2011). https://doi.org/10.1016/j.jmbbm.2010.10.013

17. T.Nochaiya, A. Chaipanich, Appl. Surf. Sci., 257, 1941 (2011). https://doi.org/10.1016/j.apsusc.2010.09.030

Current number: