Вы здесь

Funct. Mater. 2019; 26 (4): 816-822.

doi:https://doi.org/10.15407/fm26.04.816

Research of dielectric properties of carbon nanotubes and their composites using the method of artificial intelligence

Y.Zeng, X.Guo

Yellow River Conservancy Technical Institute, School of Information Engineering, Henan, China

Abstract: 

This article discusses the development of an expert system based on an artificial neural network for analyzing the dielectric properties of single-layer carbon nanotubes. By measuring and analyzing the single-walled carbon nanotube/polyurethane composites, multi-walled carbon nanotube/silicone rubber conductive polymer materials, and single-walled carbon nanotube/epoxy resin composite materials we can get the specific numerical dielectric characteristics which can reduce the workload of the researchers, reduce research cost and shorten the time and improve efficiency.

Keywords: 
carbon nanotubes, artificial neural network, expert system, dielectric properties.
References: 

1. M.G.Alalm, M.Nasr, Sust. Environment Res., 28, 101 (2018).

2. M.Chen, U.Challita, W.Saad, C.Yin, M.Debbah, IEEE Global Communication Conf., 1-6, 2017.

3. X.Gong, J. Liu, Baskaran et al., Chem. Mater., 12, 1049 (2016).

4. R.B.Yang, P.M.Reddy, C.J.Chang et al., Chem. Engin. J., 285, 497 (2016).

5. B.Chen, K.Kondoh, H.Imai et al., Scripta Mater., 113, 158 (2016).

6. M.Varga, T.Izak, V.Vretenar et al., Carbon, 111, 54 (2017).

7. X.Liu, H.L.Shuai, Y.J.Liu, K.J.Huang, Sens. Actuat. B, Chem., 235, 603 (2016).

8. X.Liang, Y.Rangom, C.Y.Kwok et al., Adv.Mater., 29, 1603040 (2016).

9. E.M.Jackson, Composites, Part B, 89, 362 (2016).

10. N.Singh, J.Chen, K.K.Koziol, K.R.Hallam et al., Nanoscale, 8, 8288 (2016).

Current number: