Funct. Mater. 2021; 28 (3): 481-485.

doi:https://doi.org/10.15407/fm28.03.481

Obtaining tin (II) oxide by a chemical method

Perdinan Sinuhaji1, Wahyu Bambang Widayatno2, Agus Sukarto Wismogroho 2, Cherly Firdharini2, Paulina Aryati Samosir1

1Universitas Sumatera Utara, Medan, 20155 Indonesia
2Research Centre of Physics, Indonesia Institute of Sciences, Serpong 15314, Tangerang Selatan, Banten, Indonesia

Abstract: 

Tin (II) oxide formation has been carried out by reacting tin powder with nitric acid at various concentrations (4 M; 4.5 M; 5 M) in a glass beaker under spontaneous stirring at various heating temperatures (100°C; 90°C; 80°C). The resulting sample in the form of a yellowish precipitate was cooled, washed using distilled water and acetone, dried in a mortar and filtered. The samples were iodometrically tested and characterized using differential thermal analysis (DTA), optical microscopy (OM) for morphology and phase analysis (XRD). The results of the iodometric test showed different oxidations. At the 4 M concentration with all heating temperature variations, Sn2+ oxidation was observed. According to the results of OM study, the surface morphology was irregular and there was a residue of tin that did not completely react with nitric acid. The results of the thermal test (DTA) showed that the sample experienced thermal decomposition at temperatures of 419°C and 426°C. XRD results indicate that the formation of SnO2 has occurred.

Keywords: 
tin (II) oxide, SnO<sub>2</sub>, precipitate, morphology.
References: 
1. C.J.Evans, Tin Ifs Uses, 86, 7 (1970).
 
2. G.Sun, F.Qi, Y.Lin et al., Mater. Lett., 118, 69 (2014).
https://doi.org/10.1016/j.matlet.2013.12.048
 
3. H.Giefers, F.Porsch, G.Wortmann, Solid State Ionics, 176, 1327 (2005).
https://doi.org/10.1016/j.ssi.2005.03.003
 
4. S.Moreno, Solid State Ionics, 144, 81 (2001).
https://doi.org/10.1016/S0167-2738(01)00882-7
 
5. G.L.Humphrey, C.J.O'Brien, J. Am. Chem. Soc., 75, 2805 (1953).
https://doi.org/10.1021/ja01108a003
 
6. Platteuw, G.Meyer, The System Tin + Oxygen, Dept. of General and Inorg. Chemistry, Tech. University, Delft (1956).
 
7. H.B.Weiser, W.O.Milligan, J. Physic. Chem., 36, 3039 (1932).
https://doi.org/10.1021/j150342a015
 
8. H.Spandau, E.J.Kohlmeyer, Z. Anorg. Chem., 254, 65 (1947).
https://doi.org/10.1002/zaac.19472540105
 
9. Veselovsky, J. Appl. Chem., 16, 397 (1943).
https://doi.org/10.2307/2261785
 
10. I.Yoshio, K.Tadahiko, M.Akihiro et al., Science, 276, 1395 (1997).
https://doi.org/10.1126/science.276.5317.1395
 
11. J.J.Ning, Q.Q.Dai, T.Jiang et al.. Langmuir, 25, 1818 (2009).
https://doi.org/10.1021/la8037473
 
12. J.J.Ning, T.Jiang, K.K.Men et al., J. Phys. Chem. C, 113, 14140 (2009).
https://doi.org/10.1021/jp905668p
 
13. M.Z.Iqbal, F.Wang, Rafi-ud-Din et al., Mater. Lett., 78, 50 (2012).
https://doi.org/10.1016/j.matlet.2012.03.056
 
14. F.Kazumi, N.Chizuko, M.Keizo, M.Shunmei, Bull. Chem. Soc. Japan, 63, 2718 (1990).
https://doi.org/10.1246/bcsj.63.2718
 
15. V.M.Jimenez, A.R.Gonzalez-Elipe, J.P.Epinos et al., Sens. Actuat., 31, 29 (1996).
https://doi.org/10.1016/0925-4005(96)80012-8
 
16. K.Amitabh, R.Rustum, J. Mater. Res., 3, 1373 (1988).
https://doi.org/10.1557/JMR.1988.1373
 
17. F.I.Pires, E.Joanni, R.Savu et al., Mater. Lett., 62, 239 (2008).
https://doi.org/10.1016/j.matlet.2007.05.006
 
18. Sornadurai, V.Sridharan, P.K.Ajikumar et al., AIP Conf. Proceed., 1832(1), 140049 (2017).
 
19. Ebitha Eqbal, E.I.Anila, Properties of transparent conducting tin monoxide(SnO) thin films prepared by chemical spray pyrolysis method, Research Laboratory, Department of Physics, Union Christian College, Aluva-Kerala-683102 India (2017).
https://doi.org/10.1016/j.physb.2017.10.080
 
20. S.Majumdar, S.Chakraborty, P.S.Devi, A.Sen, Mater. Lett., 62, 1249 (2008).
https://doi.org/10.1016/j.matlet.2007.08.022
 
21. Kaizra. S B.Bellal, Y.Louafi, M.Trari, J. Saud. Chem. Soc., 22, 76 (2018).
https://doi.org/10.1016/j.jscs.2017.07.005
 
22. Z.J.Jia, L.P.Zhu, G.H.Liao et al., Solid State Commun, 132, 79 (2008).
https://doi.org/10.1016/j.ssc.2004.07.028
 
23. B.Moloy, R.Sujit, Org. Lett., 6, 2137 (2004).
https://doi.org/10.1021/ol0493352
 
24. P.D.Prasad, S.P.Reddy, A.Deepthi et al., Intern. J. Nanotechn. Appl., 11, 265 (2017).
 
25. M.Meyer, G.Onida, A.Ponchel, L.Reining, Computat. Mater. Sci., 10, 319 (1998).
https://doi.org/10.1016/S0927-0256(97)00181-X
 
26. W.Kwestroo, P.H.G.M.Vromans, J. Inorg, Nucl. Chem., 29, 2187 (1967).
https://doi.org/10.1016/0022-1902(67)80273-2
 

 

Current number: