Funct. Mater. 2024; 31 (4): 484-486.

doi:https://doi.org/10.15407/fm31.04.484

High-temperature electrical superconductivity of layered nanoscale “heterostructures”

Yu. I. Boyko1, V.V. Bogdanov1, R. V. Vovk1, B. V. Grynyov2

1 V.N. Karazin Kharkiv National University, Svobody square, 4, Kharkiv 61022, Ukraine
2 Institute of Scintillation Materials of the SSI “Institute of Single Crystals” of the National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61072, Ukraine

Abstract: 

The paper discusses the possibility of realizing a superconducting state at temperatures of ≈102 K in layered nano-sized heterostructures – thin-film objects consisting of alternating layers of metals and semimetals (or semiconductors) with a thickness of (1–102) nm. The numerical estimates show that in such structures, an increase in the electron density in semimetals (semiconductors) leads to a change in the electrical conductivity up to the appearance of superconductivity. If we assume that superconductivity is realized as a result of electron-phonon interaction, causing the formation of Cooper electron pairs (Bardeen–Cooper–Schrieffer mechanism), then an increase in the electron density in the semiconductor layer of a nano-sized heterostructure should cause an increase in the pairing constant and so-called high-temperature superconductivity can be realized.

Keywords: 
High-temperature superconductivity, Nano-sized heterostructures, Bardeen-Cooper-Schrieffer mechanism
References: 
1. Bielejec E., Ruan J., Wu W., Phys. Rev. Lett., 87, 3681 (2001).
https://doi.org/10.1103/PhysRevLett.87.036801
 
2. Baturina T., Mironov A., Vinokur V., Baklanov M., Strunk C., Phys. Rev. Lett., 99, 257003 (2007).
https://doi.org/10.1103/PhysRevLett.99.257003
 
3. Ohtomo A., Hwang H., Nature, 427, 423 (2004).
https://doi.org/10.1038/nature02308
 
4. Gozar A., Logvenov G., Kourkoutist L., Bollinger A., Giannuzzi L., Muller D., Nature , 455, 782 (2008).
https://doi.org/10.1038/nature07293
 
5. Bardeen J., Cooper L., Shrieffer J. Phys. Rev., 108, 1175 (1957).
https://doi.org/10.1103/PhysRev.108.1175
 
6. Kittel Ch, «Fizika Tverdogo Tela», М., «Nauka», 791 pp. (1978) [in russian].
 
7. Davydov A.S., «Teoriya Tverdogo Tela», М., «Nauka», 689 pp. (1976) [in russian].
 
8. Kresin N., Guttreund H., Little W., Common., 51, 339 (1984).
https://doi.org/10.1016/0038-1098(84)90701-4
 

Current number: