Funct. Mater. 2024; 31 (4): 592-600.

doi:https://doi.org/10.15407/fm31.04.592

Development of material and method for 3D printing an absorber for a sampling detector

M. Sibilyev1, S. Barsuk2, A. Boyarintsev1, A. Carbone 3, O. Kolesnikov1, T. Sibilieva1

1 Institute of Scintillation Materials of the National Academy of Sciences of Ukraine 2 Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France 3 National Institute for Nuclear Physics Bologna Division, Bologna

Abstract: 

A new method for creating an absorber for a sampling detector using 3D printing technology on an FDM printer is proposed. A prototype of the absorber was manufactured using the proposed method. Alloys of bismuth, lead, tin and cadmium are proposed as absorber materials. The alloys studied are close to lead in their absorption properties; at the same time, they have a melting point that allows their use in 3D printing together with polymeric materials, avoiding high temperatures. It is experimentally shown that the selected material and method can potentially be used to form an alternating scintillator-reflector-absorber structure in a single technological cycle. The proposed method can be useful in the development of sampling detectors with improved energy resolution.

Keywords: 
absorber, sampling detector, alloy, scintillation element, 3D printing, composite material.
References: 
1. K. Aamodt, A. Abrahantes Quintana, R. Achenbach at al., The ALICE experiment at the CERN LHC, Journal of Instrumentation, 3 (2008). 
https://doi.org/10.1088/1748-0221/3/08/S08002
 
2. M. Pari, G. Ballerini, A. Berraet al., Nuclear Inst. and Methods in Physics Research, 936, 148 (2019), 
https://doi.org/10.1016/j.nima.2018.11.041
 
3. Bodek, A., Performance of a prototype CMS hadron barrel calorimeter in a test beam, [1998 IEEE Nuclear Science Symposium Conference Record - Toronto, Ont., Canada (8-14 Nov. 1998)] 1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255), 1-3. 
https://doi.org/10.1109/NSSMIC.1998.774785
 
4. B. Bleichert, F. Lürken, K. Lübelsmeyer at al., ,Nuclear Instruments and Methods in Physics, 241, 43 (1985), 9002(85)90514-5
https://doi.org/10.1016/0168-9002(85)90514-5
 
5. The ATLAS Collaboration, G. Aad, E. Abat et al., Journal of Instrumentation, 3 (2008). 
 
6. James E. Brau, John A. Jaros, and Hong Ma, Annual Review of Nuclear and Particle Science, 60, 615 (2010), 
https://doi.org/10.1146/annurev.nucl.012809.104449
 
7. S. Barsuk and Representing the LHCb Calorimeter group, Calorimetry in Particle Physics, 61, (2005), 
https://doi.org/10.1142/9789812701978_0009
 
8. E. Picatoste, , J. Instrumentation 19(04) (2024). 
https://doi.org/10.1088/1748-0221/19/04/C04016
 
9. M. Aaboud, G. Aad, B. Abbott at al., The European Physical Journal,78 (2018). 
https://doi.org/10.1140/epjc/s10052-018-6374-z
 
10. Ugo Amaldi, , Physica Scripta, 23 (1981). 
https://doi.org/10.1088/0031-8949/23/4A/012
 
11. Richard Wigmans, Manuel Vogel, Calorimetry - Energy Measurements in Particle Physics , 2nd edition, Oxford Science Publications, Oxford, 2017, ISBN 9780198786351 monograph, 880 pp 
https://doi.org/10.1093/oso/9780198786351.001.0001
 
12. S. Berns, E. Boillat, A. Boyarintsev at al., Journal of Instrumentation, Volume 17 (2022). 
https://doi.org/10.1088/1748-0221/17/10/P10045
 
13. S. Berns, A. Boyarintsev, S. Hugon at al., Journal of Instrumentation, JINST 15 (2020). 
https://doi.org/10.1088/1748-0221/15/10/P10019
 
14. Murty R. C., Nature, 207 (4995), 398 (1965). 
 
15. Filament: Rapid 3DShield Tungsten Filament https://shop.thevirtualfoundry.com/collections/metal-filament/products/r...
 
16. T. Sibilieva, V. Alekseev, S. Barsuk at al., Journal of Instrumentation, JINST, 18 (2023). 
https://doi.org/10.1088/1748-0221/18/03/P03007
 
17. Extruder: Noztek Pro HT 
 
18. 3D printer: CREATBOT F430 
 
19. Bingjie Zhang, Ran Yan, and Nanrong Zhao, AIP Advances, 10 (2020). 
 
20. Rieger, J. Journal of Thermal Analysis, 46, 965 (1996). 
https://doi.org/10.1007/BF01983614
 
21. Sung Hun Kim, Fouad Teymour, Jon A. Debling, Journal of Applied Polymer Science, 103 (2007). 
https://doi.org/10.1002/app.25303
 
22. T. C. Hales, Annals of Mathematics, 162, 1065 (2005), 
https://doi.org/10.4007/annals.2005.162.1065
 
23. Daniel Caduff, Mechanics of 3D lattice structures produced by rapid prototyping experiments and numerical simulations, A thesis submitted to attain the degree of Doctor of Science (Dr. sc. ETH Zurich)? 2014. 
 
24 E.I. Zubko, Yu.E. Zubko, Powder Metallurgy and Metal Ceramics, 58 (2019). 
https://doi.org/10.1007/s11106-019-00056-1
 
25. J.Peter R. Baker, Three Dimensional Printing with Fine Metal Powders , M.S, Mechanical Engineering, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/46287
 
26. Bartoníček, B., Hnát, V. & Plaček, Czech J Phys 49 (Suppl 1), 485 (1999). 
https://doi.org/10.1007/s10582-999-0065-9
 
27. Patent US10563292B2, Feb. 18, 2020, Metal material for 3-dimensional printing, method for manufacturing the same, and method for 3-dimensional printing using the same
 
28. F. Cardarelli. Materials Handbook . A Concise Desktop Reference. - Springer, 2008. - С. 210. - ISBN 978-1-84628-669-8. - https://dx.doi.org/10.1007%2F978-1-84628-669-8
 
29. Osamura, K. The Bi−Pb−Sn (Bismuth-Lead-Tin) system. Bulletin of Alloy Phase Diagrams 9, 274-281 (1988). 
https://doi.org/10.1007/BF02881280
 
 
 

Current number: