Funct. Mater. 2025; 32 (1): 157-160.

doi:https://doi.org/10.15407/fm32.01.157

Effective separation factor depending on distillation degree and temperature

A.I. Kravchenko, A.I. Zhukov

National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine, Academic st, 1, Kharkov, 61108 Ukraine

Abstract: 

The possibility of plotting the dependence of the effective separation factor β (in a well-known refining equation) on the degree of distillation g and temperature (for given values of the vapor pressure of the evaporated substance, the Peclet number at the melting temperature, the activation energy of impurity diffusion and the initial separation factor β0) through building the dependence of the purity of the condensate on g at a given β0 and at values of the Peclet number corresponding to a number of considered temperatures is shown. An example of calculating this dependence for a model material based on beryllium is given. The patterns of the named dependence are noted.

Keywords: 
distillation, sublimation, effective separation factor, Peclet number, beryllium.
References: 
1. C.J. King Separation processes - Second edition. Dover Publication, N.Y. (2013).
 
2. G.G. Devyatykh, Yelliev Yu.E. Ultrapurification of Substancers. Vysshaya Shkola, Moscow (1990) [in Russian].
 
3. Yu.I. Dytnerskii. Processes and apparatus of chemical technology: Textbook for high schools. Ed. 2. In two books. P. 2. Mass exchange processes and apparatus. Himiya, Moscow (1995) [in Russian].
 
4. L.A. Nisel'son, A.G. Yaroshevskii. Interphase separation factors. Nauka, Moscow (1992) [in Russian].
 
5. A.I. Kravchenko. Inorganic materials, 54, 1. 501 (2018).
https://doi.org/10.1134/S0020168518050084
 
6. Yu.P. Kirillov, L.A. Kuznetsov, V.A. Shaposhnikov, M.F. Churbanov. Inorganic materials, 51, 11. 1092 (2015).
https://doi.org/10.1134/S0020168515100088
 
7. A.I. Zhukov, A.I. Kravchenko. Inorganic materials, 53. 6. 648 (2017).
https://doi.org/10.1134/S0020168517060164
 
8. A.I. Kravchenko, A.I. Zhukov. Inorganic materials, 57. 7. 753 (2021).
https://doi.org/10.1134/S0020168521070104
 
9. A.I. Kravchenko, A.I. Zhukov, O.A. Datsenko. Problems of atomic science and technology, 1. 13 (2022).
https://doi.org/10.46813/2022-137-013
 
10. A.I. Zhukov, A.I. Kravchenko. Problems of atomic science and technology, 1. 25 (2024).
https://doi.org/10.46813/2024-149-025
 
11. B.S. Bokshtein, A.B. Yaroslavtsev. Diffusion of atoms and ions in solids. MISiS, Moscow (2005) [in Russian].
 
12. V.A. Pazukhin, A.Ya. Fisher. Separation and refining of metals in Vacuum. Metallurgiya, Moscow (1969) [in Russian].
 
13. A.N. Nesmeyanov. Vapor Pressure of Chemical Elements. Akad. Nauk SSSR, Moscow (1961).
 
14. A.I. Kravchenko. Problems of atomic science and technology, 1, 29 (2024).
https://doi.org/10.46813/2024-149-029

Current number: